EXERCICES — CHAPITRE 9

Solution 1 -

- 1. Pour tout $n \in \mathbb{N}^*$, on a $0 \le \frac{1}{n} \le 1$ donc A est majoré par 1 et minoré par 0.
- 2. On a $1 = \frac{1}{1} \in A$ donc 1 est le plus grand élément de A. Cependant, pour tout $n \in \mathbb{N}^*$, on a $\frac{1}{n} > \frac{1}{n+1}$ donc A n'admet pas de plus petit élément.
- 3. A admet un plus grand élément donc il admet une borne supérieure, égale à 1. A admet un minorant donc il admet une borne inférieure. Montrons que cette borne inférieure est égale à 0. Soit $\alpha > 0$. Puisque $\lim_{n \to +\infty} \frac{1}{n} = 0$, il existe $n_0 \in \mathbb{N}^*$ tel que $\frac{1}{n_0} < \alpha$. Autrement dit, α n'est pas un minorant de A. Ainsi, 0 est le plus grand minorant de A donc il s'agit bien de sa borne inférieure.
- 4. On considère maintenant $A\left\{\frac{m}{n} \mid (m,n) \in \mathbb{N}^* \times \mathbb{N}^* \text{ tel que } m < 2n\right\}$. Soit $x \in A$. Il existe $(m,n) \in \mathbb{N}^* \times \mathbb{N}^*$ avec m < 2n, tel que $x = \frac{m}{n}$. Alors, on a 0 < x < 2 donc A est majoré par 2 et minoré par 0.

Pour les mêmes raisons que l'ensemble A précédent, A ne possède pas de plus petit élément mais admet 0 comme borne inférieure.

Enfin, A n'admet pas de plus grand élément mais admet 2 comme borne supérieure.

Solution 2 – Pour tout $n \in \mathbb{N}$, $n^2 + n + 2 \ge n^2 + 1 \ge 0$. Donc

$$\sqrt{n^2 + n + 2} - \sqrt{n^2 + 1} \ge 0.$$

Donc 0 est un minorant de E.

Méthode 1 : Pour tout $n \in \mathbb{N}^*$, on a

$$\sqrt{n^2 + n + 1} - \sqrt{n^2 + 1} = \frac{(\sqrt{n^2 + n + 2} - \sqrt{n^2 + 1})(\sqrt{n^2 + n + 2} + \sqrt{n^2 + 1})}{\sqrt{n^2 + n + 2} + \sqrt{n^2 + 1}}$$

$$= \frac{n^2 + n + 2 - (n^2 + 1)}{\sqrt{n^2 + n + 2} + \sqrt{n^2 + 1}}$$

$$= \frac{n + 1}{\sqrt{n^2 + n + 2} + \sqrt{n^2 + 1}}$$

En factorisant par *n* au numérateur et au dénominateur, on obtient :

$$\sqrt{n^2 + n + 1} - \sqrt{n^2 + 1} = \frac{1 + \frac{1}{n}}{\sqrt{1 + \frac{1}{n} + \frac{2}{n^2}} + \sqrt{1 + \frac{1}{n^2}}}$$

Comme $n \geqslant 1$, on a $1 + \frac{1}{n} \leqslant 2$. De plus, comme ce sont des racines de nombres supérieurs à 1, on a

$$\sqrt{1+rac{1}{n}+rac{2}{n^2}}+\sqrt{1+rac{1}{n^2}}\geqslant 2$$

Ainsi, $\sqrt{n^2+n+1} - \sqrt{n^2+1} \leqslant \frac{2}{2} = 1$, et *E* est donc majoré par 1.

Comme *E* est majoré et minoré, *E* est borné.

Méthode 2:

On pose $f: \begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R} \\ r & \mapsto & \sqrt{x^2+x+2}-\sqrt{x^2+1} \end{array}$. Alors f est dérivable sur \mathbb{R}_+ et pour tout $x \geqslant 0$,

$$f'(x) = \frac{2x+1}{2\sqrt{x^2+x+2}} - \frac{2x}{2\sqrt{x^2+1}} = \frac{(x+\frac{1}{2})\sqrt{x^2+1} - x\sqrt{x^2+x+2}}{\sqrt{x^2+1}\sqrt{x^2+x+2}}$$
$$f'(x) = \frac{\sqrt{x^4+x^3+\frac{5}{4}x^2+x+\frac{1}{4}} - \sqrt{x^4+x^3+2x^2}}{\sqrt{x^2+1}\sqrt{x^2+x+2}}.$$

$$\sqrt{x^4 + x^3 + \frac{5}{4}x^2 + x + \frac{1}{4}} - \sqrt{x^4 + x^3 + 2x^2} \ge 0$$

$$\iff \sqrt{x^4 + x^3 + \frac{5}{4}x^2 + x + \frac{1}{4}} \ge \sqrt{x^4 + x^3 + 2x^2}$$

$$\iff x^4 + x^3 + \frac{5}{4}x^2 + x + \frac{1}{4} \ge x^4 + x^3 + 2x^2$$

$$\iff \frac{-3}{4}x^2 + x + \frac{1}{4} \ge 0$$

Le discriminant de $\frac{-3}{4}x^2 + x + \frac{1}{4}$ est $\Delta = \frac{7}{4}$ et ses racines sont

$$x_1 = \frac{-1 - \sqrt{7/4}}{-3/2} \approx 1.5 \text{ et } x_2 = \frac{-1 + \sqrt{7/4}}{-3/2} \approx -0.2.$$

Donc f' est négative sur $[2; +\infty[$, donc f est décroissante sur $[2; +\infty[$. On en déduit que la suite $\left(\sqrt{n^2+n+1}-\sqrt{n^2+1}\right)_{n\in\mathbb{N}}$ est décroissante à partir de n=2.

$$f(0) = \sqrt{2} - \sqrt{1} \leqslant 1$$

$$f(1) = 2 - \sqrt{2} \le 1$$

$$f(2) = 2\sqrt{2} - \sqrt{5} \leqslant 1$$

Donc *E* est majoré par 1.

Solution 3 - A - Soit $n \ge 1$. Lorsque n est pair, $\frac{1}{n} + (-1)^n = \frac{1}{n} + 1$.

Soit les termes $\frac{3}{2}, \frac{5}{4}, \frac{7}{6}, \dots$

Lorsque *n* est impair, $\frac{1}{n} + (-1)^n = \frac{1}{n} - 1$.

Soit les termes $0, \frac{-2}{3}, \frac{-4}{5}, \frac{-6}{7}, \dots$

L'ensemble des majorants est $\left[\frac{3}{2}; +\infty\right]$,

l'ensemble des minorants est $]-\infty,-1]$.

 $max(A) = \frac{3}{2}$, mais A n'a pas de plus petit élément.

$$\sup(A) = \frac{3}{2}, \inf(A) = -1.$$

B - On pose $f: \begin{bmatrix} 3;6[\rightarrow \mathbb{R} \\ x \mapsto \frac{x^2-3x+6}{x-2} \end{bmatrix}$. Alors f est dérivable sur]3;6[et pour tout $x \in \mathbb{R}$

]3;6[,

$$f'(x) = \frac{(2x-3)(x-2) - (x^2 - 3x + 6)}{(x-2)^2} = \frac{x^2 - 4x}{(x-2)^2} = \frac{x(x-4)}{(x-2)^2}.$$

De plus, $\lim_{f \to 6} f = 6$, f(4) = 5 et $\lim_{f \to 6} f = 6$.

x	3	4		6
f'(x)	-	0	+	
f	6	5		6

L'ensemble des majorants est $[6; +\infty[$,

l'ensemble des minorants est $]-\infty,5]$.

min(B) = 5, mais B n'a pas de plus grand élément.

$$\sup(B) = 6, \inf(B) = 5.$$

C - On sait que tout nombre réel peut être approché aussi proche que l'on souhaite, par excès ou par défaut, par une suite de nombre décimaux, donc rationnels. Donc, il existe de C aussi proche que l'on souhaite de $\sqrt{3}$ et d'autres aussi proche que l'on souhaite de

L'ensemble des majorants est $\sqrt{3}$; $+\infty$, l'ensemble des minorants est $]-\infty,\sqrt{2}]$.

C n'a pas de plus grand élément ni de plus petit élément.

$$\sup(C) = \sqrt{3}, \inf(C) = \sqrt{2}.$$

D - Pour tout $x \in \mathbb{R}_+^*$, soit x, soit $\frac{1}{x}$ est plus grand que 1 et l'autre est dans [0,1]. On en déduit que $\lfloor x \rfloor + \left| \frac{1}{r} \right| \geqslant 1$.

Or pour $x \in]\frac{1}{2}$, 1[, on a que $\frac{1}{x} \in]1$, 2[et donc $\lfloor x \rfloor + \left\lfloor \frac{1}{x} \right\rfloor = 1$.

On en déduit que 1 est le plus petit élément (et donc la borne supérieure) de *D*.

De plus, $\lfloor x \rfloor + \left\lfloor \frac{1}{x} \right\rfloor \xrightarrow[x \to +\infty]{} +\infty$, donc la borne supérieure de D est $+\infty$ et il n'y a pas de plus grand élément.

Solution 4 -

1. A est donc majorée par α et toute partie non-vide de \mathbb{R} possède une borne supérieure. $\sup(A)$ est le plus petit majorant de A et α est un majorant de A, donc $\sup(A) \leq \alpha$. Si $\forall x \in A, x < \alpha$, on ne peut pas en déduire que $\sup(A) < \alpha$. Exemple :

$$A = \left\{ 1 - \frac{1}{n} \mid n \in \mathbb{N}^* \right\}, \qquad \alpha = 1.$$

On a bien, pour tout $x \in A$, x < 1. Cependant, $\sup(A) = 1$.

2. Soit M un majorant de B. Pour tout $x \in A$, $x \in B$, donc $x \leq M$. Donc M est aussi un majorant de A.

Tout majorant de B est donc un majorant de A, donc sup(B) est aussi un majorant de A. Comme $\sup(A)$ est le plus petit majorant de A, on a $\sup(A) \leq \sup(B)$.

Solution 5 – A et B sont non-vides, donc on peut prendre $a \in A$, $b \in B$.

Pour tout $x \in A$, $x \le b$, donc b est un majorant de A. Donc A est non-vide et majorée, donc elle admet une borne supérieure α .

De même, pour tout $y \in B$, $a \le y$, donc a minore B, donc B (non-vide) admet une borne inférieure β .

Montrons par l'absurde que $\alpha \leq \beta$. Supposons que $\beta < \alpha$. Alors il existe $z \in \mathbb{R}$ tel que $\beta < z < \beta$ α .

 β est le plus grand minorant de B et $z > \beta$, donc il existe $y \in B$ tel que $\beta \le y < z$.

De même, α est le plus petit majorant de A et $\alpha > z$, donc il existe $x \in A$ tel que $z < x \le \alpha$. On a donc $\beta \le y < z < x \le \alpha$ et donc en particulier, y < x, ce qui contredit l'hypothèse $\forall x \in A$, $\forall y \in B$, $x \le y$. Donc $\alpha \le \beta$.-

Solution 6 – Notons $m = \inf(A)$ et $M = \sup(A)$. Soit $(x, y) \in A^2$. On a $m \le x \le M$, $m \le y \le M$, donc $m - M \le x - y \le M - m$, soit

$$|x-y| \leq M-m$$
.

On déduit de cette inégalité que B est non vide (car $A \neq \emptyset$) et bornée par M-m, donc elle admet une borne supérieure finie. Avec l'inégalité précédente, on obtient :

$$\sup(B) \leqslant M - m$$

Soit M_1 un majorant de B. Pour tout $(x, y) \in A^2$, $x - y \le |x - y| \le M_1$, d'où $x \le M_1 + y$ ce qui signifie que $M_1 + y$ majore A. Ainsi,

$$\forall y \in A, M \leq M_1 + y$$
 c'est-à-dire $\forall y \in A, M - M_1 \leq y$

ce qui signifie que $M-M_1$ minore A. Ainsi $M-M_1 \leqslant m$, puis $M-m \leqslant M_1$. Donc M-m est bien le plus petit des majorants de B, d'où sup(B) = M-m.

Solution 7 -

- 1. Soit α un majorant de A et β un majorant de B. Alors $\max(\alpha, \beta)$ est un majorant de $A \cup B$. De plus $A \cup B$ est non-vide (car A non-vide), donc elle admet une borne supérieure. Nous allons montrer que $\sup(A \cup B) = \max(\sup(A), \sup(B))$.
 - $A \subset A \cup B$, donc par l'exercice 4, $\sup(A) \leqslant \sup(A \cup B)$. De même, $\sup(B) \leqslant \sup(A \cup B)$. Donc $\sup(A \cup B) \geqslant \max(\sup(A), \sup(B))$. Raisonnons par l'absurde pour montrer qu'il s'agit en fait d'une égalité.

Supposons que $\sup(A \cup B) > \max(\sup(A), \sup(B))$.

Alors il existe $x \in A \cup B$ tel que $\sup(A \cup B) > x > \max(\sup(A), \sup(B))$ (par caractérisation de la borne supérieure). Or, $x > \sup(A)$, donc $x \notin A$. De même, $x \sup(B)$, donc $x \notin B$. Donc $x \notin A \cup B$. Ceci est absurde, donc $\sup(A \cup B) \leq \max(\sup(A), \sup(B))$.

Finalement, on a bien $\sup(A \cup B) = \max(\sup(A), \sup(B))$.

2. $A \cap B \subset A \cup B$, donc $A \cap B$ est majorée par $\max(\alpha, \beta)$. Si de plus elle est non-vide, alors elle admet une borne supérieure. On ne peut pas toujours l'exprimer en fonction de $\sup(A)$ et $\sup(B)$. Exemple :

Soient $a, b \in]1; +\infty[$.

$$A = \{0\} \cup \left\{ a - \frac{1}{2n} \mid n \in \mathbb{N}^* \right\}, \qquad B = \{0\} \cup \left\{ b - \frac{1}{2n+1} \mid n \in \mathbb{N}^* \right\}.$$

Alors, $\sup(A) = a$, $\sup(B) = b$, mais $A \cap B = \{0\}$, donc $\sup(A \cap B) = 0$.

Solution 8 -

1. Soient $x, y \in \mathbb{R}$, alors

 $x = E(x) + r \text{ avec } r \in [0, 1[.$

 $y = E(y) + q \text{ avec } q \in [0, 1[.$

Alors x + y = E(x) + r + E(y) + q. Donc $x + y \ge E(x) + E(y)$. Par croissance de E, on a $E(x + y) \ge E(E(x) + E(y)) = E(x) + E(y)$ car $E(x) + E(y) \in \mathbb{N}$. Donc

$$E(x) + E(y) \leqslant E(x + y)$$
.

E(x+y) = E(E(x)+r+E(y)+q). Or, $r+q \in [0,2[$, donc E(E(x)+r+E(y)+q) = E(x)+E(y) si r+q < 1 et E(E(x)+r+E(y)+q) = E(x)+E(y)+1 si $r+q \in [1,2[$. D'où

$$E(x+y) \leqslant E(x) + E(y) + 1.$$

- 2. Soit $x \in \mathbb{R}$, alors x = E(x) + r avec $r \in [0, 1]$,
 - \triangleright Si *n* est pair, alors

$$\frac{x}{2} = \frac{n}{2} + \frac{r}{2}, \qquad \frac{x+1}{2} = \frac{n}{2} + \frac{r+1}{2}$$

Comme n est pair, $\frac{n}{2} \in \mathbb{N}$. De plus, $\frac{r}{2} \in [0,1[,\frac{r+1}{2} \in [0,1[,\text{donc } E(\frac{x}{2}) = \frac{n}{2} \text{ et } E(\frac{x+1}{2}) = \frac{n}{2}$, et donc :

$$E(\frac{x}{2}) + E(\frac{x+1}{2}) = \frac{n}{2} + \frac{n}{2} = n = E(x).$$

 \triangleright Si n est impair, alors

$$\frac{x}{2} = \frac{n-1}{2} + \frac{r+1}{2}, \qquad \frac{x+1}{2} = \frac{n+1}{2} + \frac{r}{2}$$

Comme n est impair, $\frac{n-1}{2} \in \mathbb{N}$ et $\frac{n+1}{2} \in \mathbb{N}$. De plus, $\frac{r+1}{2} \in [0,1[$, $\frac{r}{2} \in [0,1[$, donc $E(\frac{x}{2}) = \frac{n-1}{2}$ et $E(\frac{x+1}{2}) = \frac{n+1}{2}$, et donc :

$$E(\frac{x}{2}) + E(\frac{x+1}{2}) = \frac{n-1}{2} + \frac{n+1}{2} = n = E(x).$$

Dans tous les cas,

$$E(\frac{x}{2}) + E(\frac{x+1}{2}) = E(x).$$

Solution 9 -

- 1. $f(0) \in [0,1]$, donc $f(0) \ge 0$, ce qui signifie que $0 \in A$. Comme A est non-vide, A admet bien une borne supérieure a.
 - $0 \in A$ et a est un majorant de A, donc $0 \le a$.
 - 1 majore *A* et *a* est le plus petit majorant de *A*, donc $a \le 1$.
- 2. Soit $y \in f(A)$. Alors il existe $x \in A$ tel que y = f(x). on a donc $f(x) \ge x$, c'est-à-dire $y \ge x$. Comme f est croissante, on en déduit que

$$f(y) \geqslant f(x) = y$$

- Donc $y \in A$. Ainsi $f(A) \subset A$.
- 3. Soit $x \in A$. On a donc que $x \le a$. Comme f est croissante, cela implique que $f(x) \le f(a)$. Comme $x \in A$, on a que $f(x) \ge x$. Finalement, on a que

$$\forall x \in A, x \leqslant f(a)$$

- Donc f(a) majore A.
- 4. La question précédente montre que $a \le f(a)$, donc $a \in A$. a est donc le plus grand élément de a. D'après la question 2, $f(a) \in A$. Or, $f(a) \ge a$ (vu que $a \in A$). Comme a est le plus grand élément de A, on en déduit que f(a) = a.

Quelques vidéos pour se cultiver:

Sur les écritures décimales des réels :

- **®** Comment écrire les nombres ayant une infinité de décimales ? - Science Etonnante ■
- ♣ Du trèfle à brouter...

♠ Qui s'y frotte s'y pique!

♥ À connaître par cœur.

♦ Calculatoire, risque de rester sur le carreau!