EXERCICES — CHAPITRE 8

Exercice 1 (\clubsuit) – Développer chacune des sommes écrites à l'aide du symbole Σ , en faisant disparaître ce symbole.

1.
$$T_1 = \sum_{k=3}^{10} \frac{1}{k^2}$$

2.
$$T_2 = \sum_{k=1}^{10} \frac{1}{2k+1}$$

Exercice 2 (\clubsuit) – Exprimer à l'aide du symbole Σ les expressions suivantes.

1.
$$S_1 = 2^3 + 2^4 + 2^5 + \dots + 2^{12}$$

4.
$$S_4 = 2 - 4 + 6 - 8 + \dots + 50$$

2.
$$S_2 = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \frac{4}{16} + \dots + \frac{10}{1024}$$
 5. $S_5 = 1^2 + 2^2 + 3^2 + \dots + 13^2 + 14^2$

5.
$$S_5 = 1^2 + 2^2 + 3^2 + \dots + 13^2 + 14^2$$

3.
$$S_3 = a + \frac{a^2}{2} + \frac{a^3}{3} + \dots + \frac{a^n}{n}$$

6.
$$S_6 = 1 + 8 + 27 + 64 + 125$$

Exercice 3 (\heartsuit) – Pour *n* dans \mathbb{N} , calculer les sommes suivantes :

1.
$$S_n = \sum_{k=0}^n (8k+2)$$

5.
$$S_n = \sum_{k=0}^{n} (2^k + 3^{2k})$$

2.
$$S_n = \sum_{k=0}^{n} (4k^2 - 4k - 2)$$

6.
$$S_n = \sum_{k=n}^{2n+1} 7$$

3.
$$S_n = \sum_{k=0}^n \frac{2^k}{5^{k+1}}$$

7.
$$S_n = \sum_{i=3}^{50} (8i + 6)$$

4.
$$S_n = \sum_{k=3}^{n+2} \frac{3^{2k+1}}{2^k}$$

8.
$$S_n = \sum_{k=n}^{2n} k^2$$

Exercice 4 (\heartsuit) – Calculer les sommes (utiliser le résultat de l'exercice 5 pour S_3):

$$S_1 = \sum_{k=8}^{21} \frac{2k-5}{6}$$
; $S_2 = \sum_{k=0}^{23} {23 \choose k} (-1)^k 2^{23-k}$; $S_3 = \sum_{k=1}^{n} (2k-1)^3$.

Exercice 5 (\P) – Démontrer par récurrence que : $\forall n \in \mathbb{N}, \sum_{k=0}^{n} k^3 = \frac{n^2(n+1)^2}{4}$.

Exercice 6 (\heartsuit) – Soit $n \in \mathbb{N}*$. Calculer la somme :

$$S_n = n + 2(n-1) + 3(n-2) + \cdots + (n-1)2 + n.$$

Exercice 7 (\spadesuit) – Pour tout $n \in \mathbb{N}$, on note P_n et I_n les sommes suivantes

$$P_n = \sum_{\substack{k=0\\k \text{ pair}}}^n \binom{n}{k}$$
 et $I_n = \sum_{\substack{k=0\\k \text{ impair}}}^n \binom{n}{k}$.

- 1. Pour tout $n \in \mathbb{N}$, exprimer $P_n + I_n$ et $P_n I_n$ en fonction de n.
- 2. En déduire, pour tout $n \in \mathbb{N}$, l'expression de P_n et I_n en fonction de n.

Exercice 8 (♥) –

- 1. (a) Montrer que pour tout $k \ge 2$, $\ln \left(1 \frac{1}{k}\right) = \ln(k-1) \ln(k)$.
 - (b) En déduire que pour tout $n \ge 2$, $\sum_{k=2}^{n} \ln \left(1 \frac{1}{k} \right) = -\ln(n)$.
- 2. (a) Montrer que pour tout $k \ge 2$, $\frac{\ln\left(1 + \frac{1}{k}\right)}{\ln(k)\ln(k+1)} = \frac{1}{\ln(k)} \frac{1}{\ln(k+1)}$
 - (b) En déduire que pour tout $n \ge 2$, $\sum_{k=2}^{n} \frac{\ln\left(1+\frac{1}{k}\right)}{\ln(k)\ln(k+1)} = \frac{1}{\ln(2)} \frac{1}{\ln(n+1)}.$
- 3. (a) Montrer que pour tout $k \ge 2$, $\ln\left(1 \frac{1}{k^2}\right) = \ln(k-1) \ln(k) + \ln(k+1) \ln(k)$.
 - (b) En déduire que pour tout $n \ge 2$, $\sum_{k=0}^{n} \ln\left(1 \frac{1}{k^2}\right) = \ln\left(1 + \frac{1}{n}\right) \ln(2)$.

Exercice 9 (\P) – Calculer, pour tout $n \in \mathbb{N}^*$, la somme $\sum_{k=1}^{n} \ln\left(1 + \frac{1}{k}\right)$.

Exercice 10 (\P) – Montrer que pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n k \cdot k! = (n+1)! - 1$.

Exercice 11 (\heartsuit) – Déterminer trois réels a, b et c tels que :

$$\forall k \in \mathbb{N}^*, \ \frac{1}{k(k+1)(k+2)} = \frac{a}{k} + \frac{b}{k+1} + \frac{c}{k+2}$$

et en déduire la valeur de la somme $S_n = \sum_{k=1}^n \frac{1}{k(k+1)(k+2)}$ pour tout $n \in \mathbb{N}^*$.

Exercice 12 (**\(\hi**) - D\(\heta\) on the \mathbb{N}^* , $\sum_{k=1}^n \frac{1}{k^2} \le 2 - \frac{1}{n}$.

Exercice 13 (\spadesuit) – Soit $n \in \mathbb{N}$. Calculer la somme

$$S_n = \sum_{k=0}^{2n} \min(k, n)$$

où min(k, n) désigne le plus petit des deux entiers k et n et la somme

$$T_n = \sum_{k=0}^{2n} (-1)^k k^2.$$

Exercice 14 (\spadesuit) – Soit *m* un entier naturel. Démontrer, pour tout entier $n \ge m$, l'égalité :

$$\sum_{k=m}^{n} \binom{k}{m} = \binom{n+1}{m+1}.$$

Exercice 15 (\heartsuit) – Soit $n \in \mathbb{N}$. Calculer les sommes doubles suivantes :

$$S_{1} = \sum_{1 \leqslant i, j \leqslant n} (i+j)^{2}$$

$$S_{2} = \sum_{1 \leqslant i, j \leqslant n} \min(i, j)$$

$$S_{3} = \sum_{1 \leqslant i \leqslant j \leqslant n} \frac{i}{j}$$

$$S_{4} = \sum_{1 \leqslant i < j \leqslant n} 2^{i+j}$$

$$S_2 = \sum_{1 \le i, i \le n} \min(i, j)$$

$$S_3 = \sum_{1 \leqslant i \leqslant j \leqslant n} \frac{i}{j}$$

$$S_4 = \sum_{1 \leqslant i < j \leqslant n} 2^{i+1}$$

Exercice 16 (**a**) – Soit $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n \sum_{j=k}^n 2^j$.

- 1. Vérifier que $S_n = n2^{n+1} + 1$.
- 2. Démontrer que $S_n = \sum_{j=0}^n (j+1)2^j$.
- 3. En déduire que :

$$\sum_{k=1}^{n} k2^{k-1} = (n-1)2^{n} + 1.$$

4. Déterminer alors la valeur de $T_n = \sum_{i=1}^{n} \sum_{j=1}^{i+1} k 2^{k-1}$.

Exercice 17 (**4**) – Soit $n \in \mathbb{N}^*$. Calculer $P_1 = \prod_{k=1}^n \frac{2k}{k+1}$ et $P_2 = \prod_{k=1}^n \left(1 - \frac{1}{k^2}\right)$.

Exercice 18 (\P **a**) – Soit $n \in \mathbb{N}^*$. Donner une expression sans le symbole \prod mais avec des factorielles de $\prod_{k=1}^{n} (2k+1)$.

Exercice 19 (♥) -

1. Soient $a_1, a_2, \dots a_n$ n éléments de \mathbb{R}_+^* . Montrer que :

$$\ln\left(\prod_{k=1}^{n} a_k\right) = \sum_{k=1}^{n} \ln(a_k).$$

2. Soient $\alpha_1, \alpha_2, \dots \alpha_n$ n éléments de \mathbb{R} . Montrer que :

$$\exp\left(\sum_{k=1}^n \alpha_k\right) = \prod_{k=1}^n e^{\alpha_k}.$$

3. <u>Application</u>: donner une expression en fonction de n de $R_n = \prod_{k=0}^n e^k$ et de $S_n = \sum_{k=0}^n \ln(k)$.

Exercice 20 (\heartsuit) – Pour tout $n \ge 2$, on considère le produit

$$P_n = \prod_{k=2}^n \frac{k^3 - 1}{k^3 + 1}.$$

- 1. Démontrer que $\forall n \ge 2$, $P_n = \frac{2}{n(n+1)} \prod_{k=0}^{n} \frac{k^2 + k + 1}{k^2 k + 1}$.
- 2. En déduire une expression simplifiée de P_n

Exercice 21 (\$\\dtheta\$) – Soit n un entier supérieur ou égal à 2. Déterminer des expressions simplifiées pour :

$$\begin{pmatrix} n \\ 0 \end{pmatrix} \qquad \begin{pmatrix} n \\ 1 \end{pmatrix} \qquad \begin{pmatrix} n \\ 2 \end{pmatrix} \qquad \begin{pmatrix} n \\ n-1 \end{pmatrix} \qquad \begin{pmatrix} n \\ n \end{pmatrix}.$$

Exercice 22 (\spadesuit) – Montrer que pour tout $n \in \mathbb{N}$, $3^{2n+1} + 2^{4n+2}$ est divisible par 7 en utilisant une factorisation.

Exercice 23 (\heartsuit) – Soit $(a, b) \in \mathbb{R}^2$. Pour tout $n \in \mathbb{N}$, calculer

$$T_n = \sum_{k=0}^{n} {n \choose k} \cos(ka + (n-k)b).$$

Exercice 24 (\heartsuit) – Soit $n \in \mathbb{N}$ fixé.

- 1. Recalculer $S_1(t) = \sum_{k=0}^n \cos(kt)$ et $S_2(t) = \sum_{k=0}^n \sin(kt)$ pour tout $t \in \mathbb{R}$.
- 2. En déduire $S_3(t) = \sum_{k=0}^n k \sin(kt)$ pour tout $t \in \mathbb{R} \setminus \{2k\pi \mid k \in \mathbb{Z}\}.$
- 3. Pour tout $t \in \mathbb{R}$, on pose $S_4(t) = \sum_{k=0}^n \cos^4(kt)$. Exprimer S_4 en fonction de S_1 .

Exercice 25 (\spadesuit) – Pour tout $n \in \mathbb{N}^*$, calculer $S_n = \sum_{k=1}^n \frac{1}{2^k} \cos\left(\frac{k\pi}{3}\right)$.

Exercice 26 () – Soit $n \in \mathbb{N}^*$. On pose $S_n = \sum_{k=0}^n \binom{2n+1}{k}$.

- 1. En effectuant le changement d'indice j = 2n + 1 k, déterminer une autre expression de S_n .
- 2. En déduire la valeur de $2S_n$, puis celle de S_n .

Exercice 27 (\P) – Calculer $\sum_{k=0}^{n} k^2 \binom{n}{k}$ où $n \in \mathbb{N}$.

♣ Du trèfle à brouter...

♠ Qui s'y frotte s'y pique!

♥ À connaître par cœur.

♦ Calculatoire, risque de rester sur le carreau!