EXERCICES — CHAPITRE 7

Exercice 1 (\$\lambda\$) – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie pour tout $n\in\mathbb{N}$ par $u_n=n^2-n+1$.

- 1. Calculer u_0 et u_{10} .
- 2. Exprimer $u_n + 1$ et u_{n+1} en fonction de n.

Exercice 2 (\clubsuit) – Dans chacun des cas, étudier le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$ définie, pour tout $n \in \mathbb{N}^*$, par

1.
$$u_n = \frac{1}{n}$$

2. $u_n = \frac{n^2 + 1}{n}$

3.
$$u_n = \ln(n)$$

3.
$$u_n = \ln(n)$$

4. $u_n = \frac{3^n}{n}$

Exercice 3 (Dans chacun des cas suivants, étudier le sens de variation de la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

- 1. $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n u_n^2$
- 2. $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = u_n + e^{u_n}$
- 3. $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = u_n + \ln(1 + |u_n|)$

Exercice 4 () – On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \sqrt{1 + u_n^2}.$$

- 1. Calculer u_1 , u_2 et u_3 .
- 2. Montrer par récurrence que pour tout entier naturel n, u_n est égal à $\sqrt{1+n}$.
- 3. Étudier la convergence de $(u_n)_{n\in\mathbb{N}}$.

Exercice 5 (\clubsuit) – On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par

$$u_n = \frac{3n+1}{n+1}.$$

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est majorée par 3.
- 2. En déduire que la suite est bornée.

Exercice 6 (4) - Les suites suivantes sont-elles minorées, majorées, bornées, monotones?

$$u_n = e^n$$
, $v_n = \frac{(-1)^n}{n+1}$,

$$w_n = (-2)^n, \qquad x_n = 2 - \frac{1}{\sqrt{n+1}}.$$

Exercice 7 (\heartsuit) – Dans chacun des cas suivants, déterminer si la suite de terme général u_n est monotone à partir d'un certain rang.

1.
$$u_n = 2^n - n$$

2.
$$u_n = \frac{n+1}{n-4}$$

3.
$$u_n = 1 + \frac{1}{n}$$

1.
$$u_n = 2^n - n$$
 2. $u_n = \frac{n+1}{n-4}$ 3. $u_n = 1 + \frac{1}{n}$ 4. $u_n = 2n^2 + 3n - 8$ 5. $u_n = \frac{2^n \sqrt{n}}{3^n}$ 6. $u_n = \frac{2n+3}{n^2}$

5.
$$u_n = \frac{2^n \sqrt{n}}{3^n}$$

$$u_n = \frac{2n+3}{n^2}$$

Exercice 8 (\blacklozenge) – Pour les suites (u_n) définies par les relations de récurrence ci-dessus, exprimer u_n en fonction de n.

1.
$$u_{n+1} = \frac{1}{2}u_n + 1$$
, $u_0 = 0$ 2. $u_{n+1} = 3u_n - 2$, $u_0 = -1$

2.
$$u_{n+1} = 3u_n - 2$$
, $u_0 = -$

3.
$$u_{n+1} = i u_n + 2i$$
, $u_0 = -1$

4.
$$u_{n+1} = -u_n + 4$$
, $u_0 = 10$

3.
$$u_{n+1} = iu_n + 2i$$
, $u_0 = -1$ **4.** $u_{n+1} = -u_n + 4$, $u_0 = 10$ **5.** $u_{n+2} = \frac{5}{2}u_{n+1} + 2u_n$, $u_0 = 0$, $u_1 = 3$ **6.** $u_{n+2} = -\frac{1}{4}u_n$, $u_0 = 1$, $u_1 = 2$

6.
$$u_{n+2} = -\frac{1}{4}u_n$$
, $u_0 = 1$, $u_1 = 2$

7.
$$u_{n+2} = 4u_{n+1} - 4u_n$$
, $u_0 = 1$, $u_1 = 0$ 8. $u_{n+2} = u_{n+1} + 6u_n$, $u_0 = 3$, $u_1 = 4$

8.
$$u_{n+2} = u_{n+1} + 6u_n$$
, $u_0 = 3$, $u_1 = 4$

Exercice 9 (\heartsuit) – Déterminer le terme général de la suite u définie par

$$u_1 = 1$$
, $\forall n \in \mathbb{N}^*$, $u_{n+1} = \frac{1}{1 + \frac{1}{u_n}}$

Exercice 10 (a) – Les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont définies par les relations de récurrence suivantes:

$$\begin{cases} u_0 = 1, & v_0 = 1, \\ \forall n \in \mathbb{N} & u_{n+1} = 3u_n + 2v_n, \\ \forall n \in \mathbb{N} & v_{n+1} = u_n + 2v_n. \end{cases}$$

On se propose de déterminer les expressions de u_n et de v_n en fonction de n. Pour cela, démontrer que la suite $(u_n)_{n\in\mathbb{N}}$ vérifie une relation de récurrence linéaire d'ordre 2, en déduire u_n en fonction de n puis v_n en fonction de n.

Exercice 11 (\P) – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$\begin{cases} u_0 = 1, \\ \forall n \in \mathbb{N} & u_{n+1} = -2u_n + 3n + 2. \end{cases}$$

On pose: $\forall n \in \mathbb{N}$ $v_n = u_n - n - \frac{1}{3}$.

- 1. Calculer u_1 , u_2 , u_3 , v_1 , v_2 et v_3 .
- 2. Démontrer que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique.
- 3. Exprimer v_n puis u_n en fonction de n.

Exercice 12 (\P) – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie sur \mathbb{N} par :

$$u_0 = 3 \text{ Et } \forall n \in \mathbb{N} \quad u_{n+1} = \frac{2u_n + 1}{u_n + 2}.$$

Le but de l'exercice est d'exprimer u_n en fonction de n.

- 1. Montrer que la suite (u_n) n'est ni arithmétique, ni géométrique.
- 2. Soit $(v_n)_{n\in\mathbb{N}}$ la suite définie sur \mathbb{N} par :

$$\forall n \in \mathbb{N} \quad v_n = \frac{1 + u_n}{2 - 2u_n}.$$

Montrer que la suite (v_n) est géométrique. En déduire l'expression de v_n en fonction de n.

3. Montrer que:

$$\forall n \in \mathbb{N} \qquad v_n \neq -\frac{1}{2}.$$

puis exprimer u_n en fonction de v_n .

4. En déduire l'expression de u_n en fonction de n.

Remarque : on admet (provisoirement) le fait que les suites (u_n) et (v_n) soient définies pour tout n dans \mathbb{N} .

Exercice 13 (\heartsuit) – On considère les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ définies par leurs premiers termes $u_0 \in \mathbb{R}$ et $v_0 \in \mathbb{R}$ et les relations :

$$\forall n \in \mathbb{N}, \quad \begin{cases} u_{n+1} = \frac{1}{4}(u_n + 3v_n) \\ v_{n+1} = \frac{1}{4}(v_n + 3u_n) \end{cases}$$

- 1. Que dire des suites $(u_n v_n)_{n \in \mathbb{N}}$ et $(u_n + v_n)_{n \in \mathbb{N}}$?
- 2. Donner l'expression des termes généraux de $(u_n v_n)_{n \in \mathbb{N}}$ et $(u_n + v_n)_{n \in \mathbb{N}}$ en fonction de n, u_0 et v_0 uniquement.
- 3. En déduire l'expression des termes généraux u_n et v_n pour tout $n \in \mathbb{N}$.

Exercice 14 (A) – Déterminer les suites bornées vérifiant la relation de récurrence :

$$\forall n \in \mathbb{N}, \quad u_{n+2} - 3u_{n+1} + 2u_n = 0.$$

♣ Du trèfle à brouter...

♠ Qui s'y frotte s'y pique!

♥ À connaître par cœur.

♦ Calculatoire, risque de rester sur le carreau!