EXERCICES — CHAPITRE 10

Exercice 1 (♦) – Étudier la convergence des suites dont le terme général s'écrit :

$$a_{n} = 3^{1/n} \qquad b_{n} = \left(\frac{3}{4}\right)^{n} \qquad c_{n} = \frac{n!}{2^{n}}$$

$$d_{n} = \frac{n - (-1)^{n}}{n + (-1)^{n}} \qquad e_{n} = \frac{2 + 3\cos(n)}{n + 1} \qquad f_{n} = n + 2\sin(n^{2})$$

$$g_{n} = 2n + (-1)^{n}n \qquad h_{n} = \sqrt{n + 1} - \sqrt{n} \qquad i_{n} = 3\sqrt{n^{2} + 1} - 5n$$

$$j_{n} = \sqrt{n^{2} + n + 1} - \sqrt{n^{2} + 1} \qquad k_{n} = \frac{n - n\ln n}{n + \ln n} \qquad \ell_{n} = \frac{e^{2n} + 3}{(e^{n} + 5)^{2}}$$

$$m_{n} = \frac{2^{n}}{n^{6} + n^{3} + 1} \qquad o_{n} = \left(n^{2} + \frac{1}{n}\right)e^{-n^{2}} \qquad p_{n} = \frac{a^{n} - b^{n}}{a^{n} + b^{n}} \quad (a, b \in \mathbb{R}^{*}_{+})$$

$$q_{n} = n^{1/\ln n} \qquad r_{n} = (\ln n)^{1/n} \qquad s_{n} = \frac{E(n/2)}{n}$$

Exercice 2 (\spadesuit) – Soit une suite réelle $(u_n)_{n\in\mathbb{N}}$ vérifiant la propriété suivante :

$$\exists \alpha > 0, \forall n \in \mathbb{N}, \ u_{n+1} - u_n \geqslant \alpha.$$

Montrer que $\lim_{n\to+\infty} u_n = +\infty$.

Exercice 3 (\P) – Montrer que les suites $(S_n)_{n\in\mathbb{N}^*}$ et $(T_n)_{n\in\mathbb{N}^*}$ dont les termes généraux sont définis pour tout $n\geqslant 1$ par :

$$S_n = 1 + \sum_{k=1}^{n-1} \frac{1}{k^2(k+1)^2}$$
 et $T_n = S_n + \frac{1}{3n^2}$

sont adjacentes.

Exercice 4 (\$\\$) – On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et

$$\forall n \in \mathbb{N}$$
, $u_{n+1} = u_n + 2n + 3$.

- 1. Étudier la monotonie de la suite $(u_n)_{n \in \mathbb{N}}$.
- 2. Démontrer par récurrence que pour tout entier naturel n, $u_n > n^2$.
- 3. En déduire la limite de la suite $(u_n)_{n \in \mathbb{N}}$.

Exercice 5 (*) – On considère la fonction f définie sur \mathbb{R} par $f(x) = x^2$.

- On définit la suite $(u_n)_{n\in\mathbb{N}}$ par $u_0=0.7$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=f(u_n)$.
- Montrer par récurrence que u_n ∈]0,1[pour tout n ∈ N.
 Montrer que la suite (u_n)_{n∈N} est décroissante.
- 3. En déduire que la suite $(u_n)_{n\in\mathbb{N}}$ converge et déterminer sa limite.

Exercice 6 (\P) – Soit g la fonction définie sur \mathbb{R} par $g(x) = (1-x)^3 + x$. On définit la suite $(a_n)_{n \in \mathbb{N}}$ en posant $a_{n+1} = g(a_n)$ pour tout $n \in \mathbb{N}$ et $a_0 = 0.4$.

- 1. Démontrer que pour tout entier naturel n, $0 < a_n < 1$.
- 2. Démontrer que la suite $(a_n)_{n\in\mathbb{N}}$ est croissante.
- 3. La suite $(a_n)_{n\in\mathbb{N}}$ converge-t-elle? Si oui, déterminer sa limite.

Exercice 7 (♦) -

1. On pose $a_0 = 1$ et $b_0 = 2$, et pour tout entier naturel n:

$$a_{n+1} = \frac{a_n + b_n}{2}$$
 et $b_{n+1} = \sqrt{a_{n+1}b_n}$

Montrer que l'on définit ainsi deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ de nombres réels strictement positifs.

On pourra procéder par récurrence sur n en montrant que, pour tout entier naturel n, les réels a_n et b_n sont bien définis et strictement positifs.

- 2. Calculer a_1 et vérifier que $b_1 = \sqrt{3}$.
- 3. (a) Établir, pour tout entier naturel n, l'égalité suivante

$$b_{n+1} - a_{n+1} = \frac{\sqrt{a_{n+1}}}{2\left(\sqrt{b_n} + \sqrt{a_{n+1}}\right)} (b_n - a_n)$$

- (b) En déduire par récurrence que, pour tout entier naturel n, on a : $a_n < b_n$.
- (c) Utiliser l'inégalité précédente pour justifier que la suite $(a_n)_{n\in\mathbb{N}}$ est strictement croissante.
- (d) Montrer que $b_n = \frac{b_{n+1}^2}{a_{n+1}}$, puis établir la stricte décroissance de la suite $(b_n)_{n \in \mathbb{N}}$.
- 4. (a) Justifier, pour tout entier naturel n, l'inégalité : $b_{n+1} a_{n+1} < \frac{1}{2} (b_n a_n)$ En déduire l'encadrement suivant : $\forall n \in \mathbb{N}, 0 < b_n a_n \leqslant \frac{1}{2^n}$
 - (b) En utilisant les résultats obtenus à la question 4, établir, pour tout entier naturel n, les inégalités suivantes : $a_n < b_0$ et $b_n > a_0$

- (c) Déduire de tout ce qui précède que les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ sont convergentes. et ont même limite. On note ℓ cette limite commune.
- (d) Montrer que, pour tout entier naturel n, on a :

$$a_n \leqslant \ell \leqslant b_n$$

5. La limite commune ℓ aux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ est l'un des quatre réels suivants :

(1)
$$\frac{\sqrt{3}}{\pi}$$

(1)
$$\frac{\sqrt{3}}{\pi}$$
 (2) $\frac{3\sqrt{3}}{\pi}$ (3) $\frac{3}{\pi}$

$$(3) \frac{3}{\pi}$$

Déterminer ℓ en justifiant votre réponse.

Exercice 8 (\spadesuit) – Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{(-1)^k}{k}$.

- 1. Montrer que les suites $(u_{2n})_{n\in\mathbb{N}^*}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.
- 2. En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ est convergente.

Exercice 9 (A) -

- 1. Justifier que lorsqu'une suite $(x_n)_{n\in\mathbb{N}}$ est convergente, alors la suite $(x_{2n}-x_n)_{n\in\mathbb{N}}$ converge vers 0.
- 2. En déduire que la suite (S_n) définie par $\forall n \in \mathbb{N}^*$, $S_n = \sum_{k=1}^n \frac{1}{k}$, est divergente.

Exercice 10 (\$\\$) – Étudier la convergence et calculer la limite de la suite $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n \in \mathbb{N}^*$ par

$$u_n = \frac{(-1)^n}{\sqrt{n}} + 1.$$

Exercice 11 (\spadesuit) – Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=a+ib$ (avec $(a,b)\in\mathbb{R}$) et : $\forall n\in\mathbb{R}$ \mathbb{N} , $u_{n+1} = \frac{1}{5}(3u_n + 2\overline{u_n})$. Cette suite est-elle convergente, et si oui, quelle est sa limite?

Exercice 12 (\heartsuit) – On considère les suites réelles (x_n) et (y_n) définies par $x_0 = 1$ et $y_0 = 1$, et pour tout $n \in \mathbb{N}$,

$$x_{n+1} = \frac{1}{2}x_n + \frac{1}{3}y_n$$
 et $y_{n+1} = -\frac{1}{3}x_n + \frac{1}{2}y_n$.

Montrer que la suite (z_n) définie par : $\forall n \in \mathbb{N}, z_n = x_n + iy_n$ est une suite géométrique dont on précisera la raison. En déduire la convergence de (x_n) et (y_n) .

Exercice 13 (\spadesuit) – On définit la suite complexe $(z_n)_{n\in\mathbb{N}}$ par :

$$z_0 \in \mathbb{C}$$
 et pour tout $n \in \mathbb{N}$, $z_{n+1} = \frac{1}{2}(z_n + |z_n|)$.

- 1. Etudier cette suite lorsque z_0 est un réel négatif
- 2. Etudier cette suite lorsque z_0 est un réel positif
- 3. Montrer que si z_0 est un nombre complexe non réel, alors pour tout $n \in \mathbb{N}$, z_n est un nombre complexe non réel.
- 4. On suppose désormais que z_0 est un complexe non réel. On pose, pour tout $n \in \mathbb{N}$, $z_n =$ $r_n e^{i\theta_n}$, où $r_n \in]0; +\infty[$ et $\theta_n \in]-\pi; \pi[\setminus \{0\}.$
 - (a) Montrer que la suite $(\theta_n)_{n\in\mathbb{N}}$ est géométrique. Préciser sa raison et exprimer son terme général en fonction de n et θ_0 .
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $r_n = r_0 \prod_{k=0}^{n} \cos\left(\frac{\theta_0}{2^k}\right)$
 - (c) Pour tout $n \in \mathbb{N}$, on pose $w_n = 2^n r_n \sin\left(\frac{\theta_0}{2^n}\right)$. Montrer que la suite $(w_n)_{n \in \mathbb{N}}$ est constante. En déduire l'expression de r_n en fonction de n.
 - (d) Montrer que la suite $(z_n)_{n\in\mathbb{N}}$ converge vers le réel $r_0 \frac{\sin\theta_0}{\theta_0}$.

Exercice 14 (♥) – Déterminer, si elles existes, les limites des suites dont les termes généraux sont:

$$\mathbf{1.} \quad u_n = \left(\frac{1-i}{1-i\sqrt{3}}\right)^n$$

2.
$$v_n = \left(1 + \frac{1}{n}\right) e^{i\frac{n}{3}}$$

1.
$$u_n = \left(\frac{1-i}{1-i\sqrt{3}}\right)^n$$
 2. $v_n = \left(1+\frac{1}{n}\right)e^{i\frac{n\pi}{3}}$ 3. $w_n = \left(1+\frac{1}{n}\right)^{-n^2}e^{i\frac{n\pi}{3}}$

4.
$$y_n = (n+1) e^{i(2+\frac{1}{n})}$$
 5. $z_n = \left(1 + \frac{i\pi}{n}\right)^n$

$$5. \quad z_n = \left(1 + \frac{i\pi}{n}\right)$$

Exercice 15 (Théorème de Césaro) (\spadesuit) – Soit $(u_n)_{n \in \mathbb{N}^*}$ une suite réelle. On pose pour tout $n \in \mathbb{N}^*$, $v_n = \frac{1}{n}(u_1 + u_2 + \dots + u_n)$.

- 1. Montrer que si $(u_n)_{n\in\mathbb{N}}$ est monotone, alors $(v_n)_{n\in\mathbb{N}}$ est monotone et de même monotonie que $(u_n)_{n\in\mathbb{N}}$.
- 2. Montrer que si $(u_n)_{n\in\mathbb{N}^*}$ converge vers 0 alors $(v_n)_{n\in\mathbb{N}}$ converge vers 0.
- 3. Montrer que si $(u_n)_{n\in\mathbb{N}^*}$ converge vers $\ell\in\mathbb{R}$ alors $(v_n)_{n\in\mathbb{N}}$ converge vers ℓ .
- 4. Donner un exemple où la suite $(v_n)_{n \in \mathbb{N}^*}$ converge mais où la suite $(u_n)_{n \in \mathbb{N}^*}$ diverge.

Exercice 16 () – On définit la fonction $f: x \mapsto e^x + x \operatorname{sur} \mathbb{R}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, l'équation f(x) = n possède une unique solution réelle. On notera x_n cette solution.
- 2. Montrer que la suite $(x_n)_{n\in\mathbb{N}}$ ainsi définie est monotone.
- 3. En déduire qu'elle admet une limite et la déterminer.

Exercice 17 (\spadesuit) – Pour tout $n \in \mathbb{N}$, on pose $u_n = \cos(n)$ et $v_n = \sin(n)$.

- 1. Pour tout entier n, exprimer u_{n+1} et v_{n+1} en fonction de u_n , v_n , u_1 et v_1 .
- 2. On suppose que les suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent respectivement vers x et y. Déterminer alors leurs limites x et y.
- 3. En déduire qu'elles sont toutes deux divergentes.

Exercice 18 (\P) – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par

$$u_0 = a \in \mathbb{R}, \quad \forall n \in \mathbb{N}, u_{n+1} = u_n^2 + 1$$

- 1. Quel est le sens de variation de $(u_n)_{n \in \mathbb{N}}$?
- 2. Étudier la limite de $(u_n)_{n\in\mathbb{N}}$.

Exercice 19 (\P) – 1. Montrer que $f: x \mapsto \frac{\cos(x)}{2}$ admet un unique point fixe ℓ dans \mathbb{R} .

2. Étudier la suite récurrente définie par $u_0 = 0$ et $u_{n+1} = \frac{1}{2}\cos(u_n)$.

Exercice 20 (\spadesuit) – On pourra utiliser la calculatrice quand nécessaire. Soit f la fonction définie sur $\mathbb R$ par :

$$\forall x \in \mathbb{R}, \ f(x) = (2x+1) e^{-x}.$$

1. Montrer que l'équation f(x) = x admet exactement deux solutions de signes contraires dans \mathbb{R} . On note a la solution positive. Montrer que a appartient à l'intervalle $I = [1; \frac{5}{4}]$. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par $u_0 = 1$ et

$$\forall\,n\in\mathbb{N},\,u_{n+1}=f(u_n).$$

- 2. Montrer que I est un intervalle stable par f.
- 3. Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ converge. Pour quelle valeur de n, u_n est une valeur approchée de a à 10^{-4} près?

Exercice 21 (A) - Étudier la convergence de la suite définie par

$$u_0 = \frac{7}{4}$$
, $\forall n \in \mathbb{N}$, $u_{n+1} = \sqrt{2 - u_n}$.

On pourra admettre que $x \mapsto \sqrt{2 - \sqrt{2 - x}}$ possède un unique point fixe.

Exercice 22 (Suite de Héron) (\P) – On considère la suite u définie par $u_0 = 2$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right).$$

Étudier la nature de cette suite et préciser sa limite éventuelle.

Exercice 23 (\P) – Introduisons $f: x \mapsto x - \ln x$ définie sur \mathbb{R}_+^* .

- 1. (a) Étudier la fonction f et tracer sa courbe, ainsi que la droite d'équation y = x.
 - (b) Montrer que $f(\mathbb{R}_+^*) \subset [1; +\infty[$ (cela revient à montrer que pour tout x > 0, $f(x) \geqslant 1$).
- 2. Soit $a \in \mathbb{R}_+^*$. Soit u la suite définie par $u_0 = a$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n \ln(u_n)$.
 - (a) À l'aide des graphes précédemment tracés, représenter sur l'axe des abscisses les premiers termes de la suite u dans le cas a = 2. Émettre une conjecture sur le comportement de u dans les cas a < 1 et $a \ge 1$.
 - (b) Pour quelle valeur de *a* la suite *u* est-elle constante?
 - (c) Dans cette question, on suppose a > 1.
 - i. Montrer que tous les termes de la suite sont supérieurs à 1.
 - ii. Montrer que la suite *u* est monotone.
 - iii. En déduire sa nature, et la valeur de sa limite.
 - (d) On suppose à présent que a < 1. Quelle est la nature de la suite?

Exercice 24 (\spadesuit) – Soit f et g deux fonctions définies et continues sur le segment [0;1], à valeurs dans [0;1]. On suppose que $f \circ g = g \circ f$. Le but de l'exercice est de démontrer que les graphes de f et g ont un point commun.

Pour cela, on suppose qu'il n'existe pas de nombre réel α appartenant à [0;1] tel que $f(\alpha)=g(\alpha)$.

- 1. Démontrer que f admet au moins un point fixe sur [0;1]. Par suite, a désigne un point fixe de f.
- 2. Montrer que la fonction f g est de signe constant.
- 3. On introduit la suite u définie par $u_0 = a$ et par la relation de récurrence $u_{n+1} = g(u_n)$.
 - (a) Démontrer que pour tout entier naturel n, u_n est un point fixe de f.
 - (b) En déduire que la suite u est monotone.
 - (c) Montrer que la suite u converge, vers un nombre réel de [0;1], noté ℓ .
 - (d) Démontrer que ℓ est à la fois un point fixe de f et de g.
- 4. Conclure.

Exercice 25 (♠) – Montrer que la partie *A* définie par

$$A = \left\{ \frac{k}{2^n} \mid n \in \mathbb{N}, \ k \in \mathbb{N}, \ 0 \leqslant k \leqslant 2^n \right\}$$

est dense dans [0,1].

De manière équivalente à la définition de partie dense dans \mathbb{R} , on dit qu'une partie A d'un segment [a,b] est dense dans [a,b] si entre deux éléments quelconques de [a,b], il existe toujours au moins un élément de A, ou de manière équivalente si tout élément de [a,b] est limite d'une suite d'éléments de A.

Exercice 26 (\spadesuit) – On appelle *suite de Cauchy* toute suite réelle $(u_n)_{n\in\mathbb{N}}$ pour laquelle :

$$\forall \varepsilon > 0, \exists N \in \mathbb{N}, \forall p, q \geqslant N, |u_p - u_q| < \varepsilon$$

- 1. Montrer que toute suite convergente est de Cauchy.
- 2. (a) Montrer que toute suite de Cauchy est bornée.
 - (b) À l'aide du théorème de Bolzano-Weierstrass, en déduire que toute suite de Cauchy est convergente.

Remarque culturelle : cette propriété s'appelle la complétude de \mathbb{R} (elle peut aussi s'étendre sans difficulté à \mathbb{C}) et est fondamentale pour de nombreuses applications en Analyse.

Quelques vidéos pour se cultiver:

Suites récurrentes complexes et... fractales :

Beyond the Mandelbrot set, intro to holomorphic dynamics - - 3Blue1Brown

♣ Du trèfle à brouter...

♠ Qui s'y frotte s'y pique!

♥ À connaître par cœur.

♦ Calculatoire, risque de rester sur le carreau!