EXERCICES — CHAPITRE 10

Solution 1 -

- a) Pour tout $n \ge 1$, $a_n = \exp(\ln(3)/n)$. Donc $\lim_{n \to +\infty} a_n = 1$.
- b) b est une suite géométrique de raison de module strictement inférieur à 1, donc $\lim_{n\to+\infty}b_n=0$.
- c) Par croissances comparées, $\lim_{n \to +\infty} c_n = +\infty$.
- d) Pour tout $n \ge 2$, $d_n = \frac{1 \frac{(-1)^n}{n}}{1 + \frac{(-1)^n}{n}}$.

Comme $-\frac{1}{n} \leqslant \frac{(-1)^n}{n} \leqslant \frac{1}{n}$ et $\lim_{n \to +\infty} \frac{1}{n} = 0$, d'après le théorème des gendarmes, $\lim_{n \to +\infty} \frac{(-1)^n}{n} = 0$. Il n'y alors plus de forme indéterminée et on a $\lim_{n \to +\infty} d_n = 1$.

e) Pour tout $n \in \mathbb{N}$, $-1 \le \cos(n) \le 1$, donc

$$\frac{-1}{n+1} \leqslant \frac{2+3\cos(n)}{n+1} \leqslant \frac{5}{n+1}.$$

 $\lim_{n\to +\infty}\frac{-1}{n+1}=\lim_{n\to +\infty}\frac{5}{n+1}=0. \text{ Par le th\'eor\`eme des gendarmes, }\lim_{n\to +\infty}e_n=0.$

f) Pour tout $n \in \mathbb{N}$, $-1 \leqslant \sin(n^2)$, donc

$$n-2 \le n+2\sin(n^2)$$
.

 $\lim_{n\to +\infty} n-2=+\infty.$ Par le théorème du gendarme, $\lim_{n\to +\infty} f_n=+\infty.$

- g) Pour tout $n \in \mathbb{N}$, on a $g_n \geqslant 2n n = n$. Comme $\lim_{n \to +\infty} g_n = +\infty$, on a par théorème du gendarme que $\lim_{n \to +\infty} g_n = +\infty$.
- h) Pour tout $n \ge 1$, on a

$$h_n = \frac{(\sqrt{n+1} - \sqrt{n})(\sqrt{n+1} + \sqrt{n})}{\sqrt{n+1} + \sqrt{n}}$$
$$= \frac{n+1-n}{\sqrt{n+1} + \sqrt{n}}$$
$$= \frac{1}{\sqrt{n+1} + \sqrt{n}}$$

Donc $\lim_{n\to+\infty}h_n=0$.

i) Pour tout $n \ge 1$, on a

$$i_n = n \left(3\sqrt{1 + \frac{1}{n^2}} - 5 \right)$$

$$\lim_{n \to +\infty} \left(3\sqrt{1 + \frac{1}{n^2}} - 5 \right) = -2, \text{ Donc } \lim_{n \to +\infty} i_n = -\infty.$$

j) Pour tout $n \ge 1$, on a

$$j_n = \frac{(\sqrt{n^2 + n + 1} - \sqrt{n^2 + 1})(\sqrt{n^2 + n + 1} + \sqrt{n^2 + 1})}{\sqrt{n^2 + n + 1} + \sqrt{n^2 + 1}}$$

$$= \frac{n^2 + n + 1 - (n^2 + 1)}{\sqrt{n^2 + n + 1} + \sqrt{n^2 + 1}}$$

$$= \frac{n}{\sqrt{n^2 + n + 1} + \sqrt{n^2 + 1}}$$

$$= \frac{1}{\sqrt{1 + \frac{1}{n} + \frac{1}{n^2}} + \sqrt{1 + \frac{1}{n^2}}}$$

$$\lim_{n\to+\infty}\sqrt{1+\frac{1}{n}+\frac{1}{n^2}}+\sqrt{1+\frac{1}{n^2}}=2,\,\mathrm{donc}\,\lim_{n\to+\infty}j_n=\frac{1}{2}.$$

k) Pour tout $n \ge 2$

$$\frac{n - n \ln(n)}{n + \ln(n)} = \frac{n \ln(n)}{n} \times \frac{\frac{1}{\ln(n)} - 1}{1 + \frac{\ln(n)}{n}} = \ln(n) \times \frac{\frac{1}{\ln(n)} - 1}{1 + \frac{\ln(n)}{n}}.$$

Par croissance comparée, $\lim_{n \to +\infty} \frac{\ln(n)}{n} = 0$, donc $\lim_{n \to +\infty} k_n = -\infty$.

- l) On procède pas disjonction de cas selon les positions relatives de a et b.
 - Si a = b, alors p est la suite constante nulle donc converge vers 0.
 - Si a < b, alors pour tout $n \in \mathbb{N}^*$,

$$p_n = \frac{a^n}{a^n} \times \frac{1 - \left(\frac{b}{a}\right)^n}{1 + \left(\frac{b}{a}\right)^n} = \frac{1 - \left(\frac{b}{a}\right)^n}{1 + \left(\frac{b}{a}\right)^n}$$

On a
$$0 \le \frac{b}{a} < 1$$
, donc $\lim_{n \to +\infty} \left(\frac{b}{a}\right)^n = 0$. D'où $\lim_{n \to +\infty} p_n = 1$.

• Si a > b, alors pour tout $n \in \mathbb{N}^*$,

$$p_n = \frac{b^n}{b^n} \times \frac{\left(\frac{a}{b}\right)^n - 1}{\left(\frac{a}{b}\right)^n + 1} = \frac{\left(\frac{a}{b}\right)^n - 1}{\left(\frac{a}{b}\right)^n + 1}$$

On a $0 \le \frac{a}{b} < 1$, donc $\lim_{n \to +\infty} \left(\frac{a}{b}\right)^n = 0$. D'où $\lim_{n \to +\infty} p_n = -1$.

m) Pour tout $n \in \mathbb{N}^*$, on a

$$q_n = e^{\frac{\ln(n)}{\ln(n)}} = e.$$

Donc $\lim_{n\to+\infty} q_n = e$.

n) Pour tout $n \ge 2$, on a

$$r_n = \mathrm{e}^{\frac{\ln(\ln(n))}{n}}$$

Pour tout $n\geqslant 3$, $0\leqslant \frac{\ln(\ln(n))}{n}\leqslant \frac{\ln(n)}{n}$. De plus $\lim_{n\to +\infty}\frac{\ln(n)}{n}=0$ par croissances comparées, donc $\lim_{n\to +\infty}\frac{\ln(\ln(n))}{n}=0$ par théorème des gendarmes. On en déduit que $\lim_{n\to +\infty}r_n=1$.

o) Pour tout $n \in \mathbb{R}^*$, $\frac{n}{2} - 1 < E(n/2) \le \frac{n}{2}$, donc

$$\frac{1}{2} - \frac{1}{n} < \frac{E(n/2)}{n} \leqslant \frac{1}{2}$$

 $\lim_{n\to +\infty}\frac{1}{2}-\frac{1}{n}=\frac{1}{2}, \text{ donc par th\'eor\`eme des gendarmes, } \lim_{n\to +\infty}\frac{E(n/2)}{n}=\frac{1}{2}$

Solution 2 – On note $\alpha > 0$ tel que $\forall n \in \mathbb{N}$, $u_{n+1} - u_n \geqslant \alpha$.

On pose pour tout $n \in \mathbb{N}$, $P_n : \langle u_n \geq u_0 + n\alpha \rangle$. On va montrer par récurrence sur n que P_n est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $u_0 \ge u_0$, donc P_0 est vraie.

Hérédité : Soit $n \in \mathbb{N}$ fixé. On suppose que P_n est vraie.

$$u_{n+1} \geqslant u_n + \alpha \geqslant n\alpha + \alpha = (n+1)\alpha$$
.

Conclusion : Par récurrence, pour tout $n \in \mathbb{N}$, $u_n \geqslant n\alpha$.

 $\lim_{n\to +\infty} n\alpha = +\infty, \text{ donc par th\'eor\`eme de comparaison}, \lim_{n\to +\infty} u_n = +\infty.$

Solution 3 – Pour tout $n \in \mathbb{N}^*$,

$$S_{n+1} - S_n = 1 + \sum_{k=1}^n \frac{1}{k^2(k+1)^2} - 1 - \sum_{k=1}^{n-1} \frac{1}{k^2(k+1)^2} = \frac{1}{n^2(n+1)^2} \geqslant 0.$$

$$T_{n+1} - T_n = S_{n+1} + \frac{1}{3(n+1)^2} - S_n - \frac{1}{3n^2}$$

$$= \frac{1}{n^2(n+1)^2} + \frac{n^2}{3n^2(n+1)^2} - \frac{(n+1)^2}{3n^2(n+1)^2}$$

$$= \frac{3+n^2-n^2-2n-1}{3n^2(n+1)^2}$$

$$= \frac{2(1-n)}{3n^2(n+1)^2} \le 0$$

Donc $(S_n)_{n\in\mathbb{N}^*}$ est croissante et $(T_n)_{n\in\mathbb{N}^*}$ est décroissante. Pour tout $n\in\mathbb{N}^*$, $T_n-S_n=\frac{1}{3n^2}$ donc $\lim_{n\to+\infty}T_n-S_n=0$.

Solution 4 -

1. Je calcule la différence entre deux termes consécutifs puis j'étudie son signe. Pour tout $n \in \mathbb{N}^*$,

$$u_{n+1} - u_n = u_n + 2n + 3 - u_n = 2n + 3 \ge 0.$$

Donc $u_{n+1} - u_n \ge 0$, *i.e.* $u_{n+1} \ge u_n$. Donc la suite $(u_n)_{n \in \mathbb{N}}$ est croissante.

2. **Énoncé:** Je note \mathcal{P}_n la propriété: $u_n > n^2$.

Initialisation: Pour n = 0, $u_0 = 1$ et $1 > 0 = 0^2$. Ainsi \mathcal{P}_0 est vraie.

Hérédité: Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi.

Par définition de la suite $(u_n)_{n \in \mathbb{N}}$, $u_{n+1} = u_n + 2n + 3$. Or par hypothèse de récurrence $u_n > n^2$, donc

$$u_{n+1} = u_n + 2n + 3 > n^2 + 2n + 3 > n^2 + 2n + 1 = (n+1)^2$$

Donc $u_{n+1} > (n+1)^2$. Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme elle est héréditaire et vraie pour n = 0, alors par principe de récurrence, la propriété \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad u_n > n^2.$$

3. Comme je sais désormais que pour tout n, $u_n > n^2$ et comme $\lim_{n \to +\infty} n^2 = +\infty$, alors j'en déduis par théorème de comparaison que

$$\lim_{n\to+\infty}u_n=+\infty.$$

Solution 5 -

1. **Énoncé:** Je note \mathcal{P}_n la propriété: $u_n \in]0,1[$.

Initialisation : Pour n = 0, $u_0 = 0.7$ et $0.7 \in]0,1[$. Ainsi \mathcal{P}_0 est vraie.

Hérédité: Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi. Par définition de la suite $(u_n)_{n \in \mathbb{N}}$, $u_{n+1} = u_n^2$. Or par hypothèse de récurrence $u_n \in [0,1[$, donc par croissance de la fonction carrée sur l'intervalle [0,1],

$$u_n \in]0,1[$$
 \iff $0 < u_n < 1$ \iff $0^2 < u_n^2 < 1^2$
 \iff $0 < u_{n+1} < 1$ \iff $u_{n+1} \in]0,1[$.

Donc $u_{n+1} \in]0,1[$. Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme elle est héréditaire et vraie pour n = 0, alors par principe de récurrence, la propriété \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad u_n \in]0,1[.$$

- 2. Soit $n \ge 0$. D'après la question précédente, $0 < u_n < 1$ et en multipliant par u_n , j'obtiens que $0 < u_n^2 < u_n$, *i.e.* en particulier $u_{n+1} = u_n^2 \le u_n$. Donc la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante.
- 3. D'après les deux questions précédentes, la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 0. Donc par le théorème de la limite monotone, j'en déduis que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente. Je note ℓ sa limite, je sais que $\lim_{n\to+\infty}u_n=\ell$ et $\lim_{n\to+\infty}u_{n+1}=\ell$. Puisque $u_{n+1}=u_n^2$, en faisant tendre n vers l'infini et en passant à la limite, j'obtiens que

$$\ell = \ell^2 \iff \ell^2 - \ell = 0 \iff \ell \times (\ell - 1) = 0 \iff \ell = 0 \text{ ou } \ell = 1.$$

Puisque la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante et que son premier terme vaut $u_0=0.7$, alors j'en déduis que

$$\lim_{n\to+\infty}u_n=0.$$

Solution 6 -

1. **Énoncé:** Je note \mathcal{P}_n la propriété: $0 < a_n < 1$.

Initialisation : Pour n = 0, $a_0 = 0.4$ et 0 < 0.4 < 1. Ainsi \mathcal{P}_0 est vraie.

Hérédité: Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi.

Par définition de la suite $(a_n)_{n \in \mathbb{N}}$, $a_{n+1} = (1 - a_n)^3 + a_n$. Or par hypothèse de récurrence $0 < a_n < 1$, donc

$$0 < a_n < 1$$

$$\iff 0 < 1 - a_n < 1$$

$$\iff 0 < (1 - a_n)^2 < 1$$

$$\iff 0 < (1 - a_n)^3 < 1 - a_n$$

$$\iff 0 < a_n < (1 - a_n)^3 + a_n < 1$$

$$\iff 0 < a_{n+1} < 1$$

Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme elle est héréditaire et vraie pour n = 0, alors par principe de récurrence, la propriété \mathcal{P}_n est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad 0 < a_n < 1.$$

- 2. Soit $n \ge 0$. D'après la démonstration de l'hérédité dans la question précédente, je sais que $0 < a_n < a_{n+1} < 1$ et en particulier $a_{n+1} \ge a_n$. Donc la suite $(a_n)_{n \in \mathbb{N}}$ est croissante.
- 3. D'après les deux questions précédentes, la suite $(a_n)_{n\in\mathbb{N}}$ est croissante et majorée par 1. Donc par le théorème de la limite monotone, j'en déduis que la suite $(a_n)_{n\in\mathbb{N}}$ est convergente. Je note ℓ sa limite, je sais que $\lim_{n\to+\infty} a_n = \ell$ et $\lim_{n\to+\infty} a_{n+1} = \ell$.

Puisque $a_{n+1} = (1 - a_n)^3 + a_n$, en faisant tendre n vers l'infini et en passant à la limite, j'obtiens que

$$\ell = (1 - \ell)^3 + \ell \iff (1 - \ell)^3 = 0 \iff 1 - \ell = 0 \iff \ell = 1.$$

Ainsi $\lim_{n\to+\infty} u_n = \ell = 1$.

Solution 7 -

1. Je raisonne par récurrence sur $n \in \mathbb{N}$.

Énoncé: Je note \mathcal{P}_n la propriété: " a_n et b_n sont bien définis et positifs".

Initialisation : Pour n = 0, $a_0 = 1$ et $b_0 = 2$ sont bien définis et positifs. Ainsi \mathcal{P}_0 est vraie.

Hérédité: Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi.

- $a_{n+1} = \frac{a_n + b_n}{2}$ est bien défini et positif puisque par hypothèse de récurrence, $a_n \ge 0$ et $b_n \ge 0$ donc $a_n + b_n \ge 0$,
- $b_{n+1} = \sqrt{a_{n+1}b_n}$ est aussi bien défini puisque $a_{n+1} \ge 0$ et $b_n \ge 0$. Et comme c'est une racine carrée, $b_{n+1} \ge 0$.

Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est héréditaire et vraie pour n = 0, alors par principe de récurrence, la propriété est vraie pour tout $n \ge 0$, c'est-à-dire que pour tout entier naturel n, les réels a_n et b_n sont bien définis et positifs.

2. En utilisant les formules de récurrence et les valeurs de l'énoncé,

$$a_1 = \frac{a_0 + b_0}{2} = \frac{1+2}{2} = \frac{3}{2}$$
 Et $b_1 = \sqrt{a_1 b_0} = \sqrt{\frac{3}{2} \times 2} = \sqrt{3}$.

3. (a) Grâce aux formules de a_{n+1} et b_{n+1} et en utilisant l'expression conjuguée, alors

$$\begin{split} b_{n+1} - a_{n+1} &= \sqrt{a_{n+1}b_n} - a_{n+1} = \sqrt{a_{n+1}} \times \left(\sqrt{b_n} - \sqrt{a_{n+1}}\right) \\ &= \sqrt{a_{n+1}} \times \left(\sqrt{b_n} - \sqrt{a_{n+1}}\right) \times \frac{\sqrt{b_n} + \sqrt{a_{n+1}}}{\sqrt{b_n} + \sqrt{a_{n+1}}} \\ &= \frac{\sqrt{a_{n+1}}}{\sqrt{b_n} + \sqrt{a_{n+1}}} \times \left(\sqrt{b_n} - \sqrt{a_{n+1}}\right) \times \left(\sqrt{b_n} + \sqrt{a_{n+1}}\right) \\ &= \frac{\sqrt{a_{n+1}}}{\sqrt{b_n} + \sqrt{a_{n+1}}} \times \left(b_n - a_{n+1}\right) = \frac{\sqrt{a_{n+1}}}{\sqrt{b_n} + \sqrt{a_{n+1}}} \times \left(b_n - \frac{a_n + b_n}{2}\right) \\ &= \frac{\sqrt{a_{n+1}}}{\sqrt{b_n} + \sqrt{a_{n+1}}} \times \frac{b_n - a_n}{2} = \frac{\sqrt{a_{n+1}}}{2\left(\sqrt{b_n} + \sqrt{a_{n+1}}\right)} \times \left(b_n - a_n\right) \end{split}$$

(b) Je raisonne par récurrence sur $n \in \mathbb{N}$.

Énoncé: Je note \mathcal{P}_n la propriété: $a_n < b_n$.

Initialisation : Pour n = 0, $a_0 = 1$ et $b_0 = 2$. Ainsi \mathcal{P}_0 est vraie.

Hérédité: Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi. Alors

$$b_{n+1} - a_{n+1} = \frac{\sqrt{a_{n+1}}}{2(\sqrt{b_n} + \sqrt{a_{n+1}})} \times (b_n - a_n)$$

et tous les facteurs impliqués sont positifs, comme racines carrées et par hypothèse de récurrence, car $a_n < b_n \iff b_n - a_n > 0$. Ainsi $b_{n+1} - a_{n+1} > 0$, *i.e.* $a_{n+1} < b_{n+1}$.

Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est héréditaire et vraie pour n = 0, alors par principe de récurrence, la propriété est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad a_n < b_n.$$

(c) Pour obtenir les variations de la suite $(a_n)_{n \in \mathbb{N}}$, je calcule la différence entre deux termes consécutifs quelconques. Soit $n \in \mathbb{N}$,

$$a_{n+1} - a_n = \frac{a_n + b_n}{2} - a_n = \frac{b_n - a_n}{2} > 0,$$

puisque d'après la question précédente, $a_n < b_n$, *i.e.* $b_n - a_n > 0$. J'ai ainsi montré que $\forall n \in \mathbb{N}$, $a_{n+1} - a_n > 0$, *i.e.* $a_{n+1} > a_n$. Donc la suite $(a_n)_{n \in \mathbb{N}}$ est strictement croissante.

(d) Par définition de b_{n+1} ,

$$b_{n+1}^2 = a_{n+1}b_n \iff b_n = \frac{b_{n+1}^2}{a_{n+1}}.$$

Alors comme à la question précédente, je calcule la différence entre deux termes consécutifs quelconques. Soit $n \in \mathbb{N}$,

$$b_{n+1} - b_n = b_{n+1} - \frac{b_{n+1}^2}{a_{n+1}} = \frac{b_{n+1}a_{n+1} - b_{n+1}^2}{a_{n+1}} = \frac{b_{n+1}}{a_{n+1}} (a_{n+1} - b_{n+1}) < 0,$$

puisque d'après la question précédente, $a_{n+1} < b_{n+1}$, *i.e.* $a_{n+1} - b_{n+1} < 0$. J'ai ainsi montré que $\forall n \in \mathbb{N}$, $b_{n+1} - b_n < 0$, *i.e.* $a_{n+1} < a_n$. Donc la suite $(b_n)_{n \in \mathbb{N}}$ est strictement décroissante.

4. (a) Par positivité de la racine carrée, comme les a_n et les b_n ne sont pas nuls, je sais que $\sqrt{b_n} > 0$. Alors $\sqrt{b_n} + \sqrt{a_{n+1}} > \sqrt{a_{n+1}}$ et $\frac{\sqrt{a_{n+1}}}{\sqrt{b_n} + \sqrt{a_{n+1}}} < 1$. Puis en injectant cette inéquation dans l'expression de la question **4.a**), j'obtiens directement que

$$b_{n+1} - a_{n+1} = \frac{\sqrt{a_{n+1}}}{2\left(\sqrt{b_n} + \sqrt{a_{n+1}}\right)} \times (b_n - a_n) < \frac{1}{2} \times (b_n - a_n).$$

Pour l'encadrement, je raisonne par récurrence sur $n \in \mathbb{N}$.

Énoncé: Je note \mathcal{P}_n la propriété: $0 < b_n - a_n \le \frac{1}{2^n}$.

Initialisation : Pour n = 0, $b_0 - a_0 = 2 - 1 = 1$ et $0 < 1 \le \frac{1}{2^0} = 1$. Ainsi \mathcal{P}_0 est vraie.

Hérédité: Soit $n \ge 0$. Je suppose que \mathcal{P}_n est vraie et je montre que \mathcal{P}_{n+1} l'est aussi. Alors $b_{n+1} - a_{n+1}$ est strictement positif d'après la question **4.b**) et

$$0 < b_{n+1} - a_{n+1} < \frac{1}{2} \times (b_n - a_n) < \frac{1}{2} \times \frac{1}{2^n} = \frac{1}{2^{n+1}}.$$

Finalement \mathcal{P}_{n+1} est vraie et la propriété est héréditaire.

Conclusion : Comme la propriété est héréditaire et vraie pour n = 0, alors par principe de récurrence, la propriété est vraie pour tout $n \ge 0$, *i.e.*

$$\forall n \in \mathbb{N}, \quad 0 < b_n - a_n \leqslant \frac{1}{2^n}.$$

(b) Je sais que pour tout entier naturel n, $a_n < b_n$ et que la suite $(b_n)_{n \in \mathbb{N}}$ est strictement décroissante. Donc en particulier $b_n < b_0$ et ainsi

$$a_n < b_n < b_0$$
.

De la même manière, en utilisant cette fois la stricte croissance de la suite $(a_n)_{n \in \mathbb{N}}$, alors $a_n > a_0$ et ainsi

$$a_0 < a_n < b_n$$
.

Ainsi j'ai bien montré que pour tout entier naturel n,

$$a_n < b_0$$
 Et $a_0 < b_n$.

(c) La suite $(a_n)_{n\in\mathbb{N}}$ est strictement croissante et majorée par b_0 d'après la question **5.b**). Par théorème de la limite monotone, la suite $(a_n)_{n\in\mathbb{N}}$ converge vers une limite ℓ_a .

De la même manière, la suite $(b_n)_{n\in\mathbb{N}}$ est strictement décroissante et minorée par a_0 . Par théorème de la limite monotone, la suite $(b_n)_{n\in\mathbb{N}}$ converge vers une limite ℓ_b .

Pour montrer que ces deux limites sont égales, j'étudie la suite $(b_n - a_n)_{n \in \mathbb{N}}$. Par convergence des suites $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$, cette suite converge et

$$\lim_{n\to+\infty}b_n-a_n=\ell_b-\ell_a.$$

Or je connais un encadrement de cette suite par la question 5.a)

et comme $\lim_{n\to+\infty}0=\lim_{n\to+\infty}\frac{1}{2^n}=0$, alors par le théorème des gendarmes, j'en déduis que

$$\lim_{n\to+\infty}b_n-a_n=0.$$

Enfin par unicité de la limite,

$$\ell_b - \ell_a = 0 \iff \ell_a = \ell_b$$

ce qui signifie que les deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ convergent vers une même limite ℓ .

(d) Par stricte croissance de la suite $(a_n)_{n\in\mathbb{N}}$, alors pour tout entier naturel $n, a_n \leq \ell$. De même, par stricte décroissance de la suite $(b_n)_{n\in\mathbb{N}}$, alors pour tout entier $n, \ell \leq b_n$.

 $a_n \leqslant \ell \leqslant b_n$.

Ainsi j'ai bien montré que pour tout entier naturel
$$n$$
,

5. Je procède par élimination. Je sais que $1 = a_0 \le \ell \le b_0 = 2$. Donc

•
$$\frac{\sqrt{3}}{\pi} \approx \frac{1.73}{3.14} < 1$$
 ne peut pas être la limite ℓ .

• $\frac{3}{\pi} \approx \frac{3}{3.14} < 1$ ne peut pas être la limite ℓ .

• 3 > 2 ne peut pas être la limite ℓ .

Ainsi la limite commune aux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ est $\ell=\frac{3\sqrt{3}}{\pi}$.

Solution 8 -

1. Pour tout $n \in \mathbb{N}^*$,

$$u_{2n+2} - u_{2n} = \sum_{k=1}^{2n+2} \frac{(-1)^k}{k} - \sum_{k=1}^{2n} \frac{(-1)^k}{k}$$

$$= \frac{(-1)^{2n+2}}{2n+2} + \frac{(-1)^{2n+1}}{2n+1}$$

$$= \frac{1}{2n+2} - \frac{1}{2n+1}$$

$$= \frac{2n+1 - (2n+2)}{(2n+1)(2n+2)}$$

$$= \frac{-1}{(2n+1)(2n+2)} \le 0$$

Donc $(u_{2n})_{n\in\mathbb{N}^*}$ est décroissante. Pour tout $n\in\mathbb{N}$,

$$u_{2n+3} - u_{2n+1} = \sum_{k=1}^{2n+3} \frac{(-1)^k}{k} - \sum_{k=1}^{2n+1} \frac{(-1)^k}{k}$$
$$= \frac{(-1)^{2n+3}}{2n+3} + \frac{(-1)^{2n+2}}{2n+2}$$
$$= \frac{-1}{2n+3} + \frac{1}{2n+2}$$
$$= \frac{-(2n+2) + (2n+3)}{(2n+2)(2n+3)}$$
$$= \frac{1}{(2n+3)(2n+2)} \geqslant 0$$

Donc $(u_{2n+1})_{n\in\mathbb{N}^*}$ est décroissante. Pour tout $n\in\mathbb{N}$,

$$u_{2n+1} - u_{2n} = \sum_{k=1}^{2n+1} \frac{(-1)^k}{k} - \sum_{k=1}^{2n} \frac{(-1)^k}{k} = \frac{(-1)^{2n+1}}{2n+1}.$$

Donc $\lim_{n\to+\infty}u_{2n+1}-u_{2n}=0$. On en déduit que $(u_{2n})_{n\in\mathbb{N}^*}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.

2. D'après le théorème des suites adjacentes, elles convergent vers la limite. Or, un résultat du cours nous assure que si les suites extraites $(u_{2n})_{n\in\mathbb{N}^*}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers une même limite, alors $(u_n)_{n\in\mathbb{N}^*}$ converge cette limite.

Solution 9 -

- 1. Si $(x_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors toute suite extraite de x converge vers cette même limite. Donc $(x_{2n})_{n\in\mathbb{N}}$ converge vers ℓ . par opération sur les limites, on en déduit que $(x_{2n}-x_n)_{n\in\mathbb{N}}$ converge vers 0.
- 2. On va utiliser la contraposée de la question 1. Pour tout $n \in \mathbb{N}^*$,

$$S_{2n} - S_n = \sum_{k=1}^{2n} \frac{1}{k} - \sum_{k=1}^{n} \frac{1}{k} = \sum_{k=n+1}^{2n} \frac{1}{k}$$

Or, pour tout $k \in [n+1,2n]$, on a $\frac{1}{k} \geqslant \frac{1}{2n}$. Donc

$$S_{2n} - S_n \geqslant \sum_{k=n+1}^{2n} \frac{1}{2n} = \frac{n}{2n} = \frac{1}{2}$$

Donc $S_{2n} - S_n$ ne converge pas vers 0. Par contraposée de la question 1, on en déduit que (S_n) ne converge pas.

Solution 10 – On sait que, $\forall n \in \mathbb{N}^*$, $-1 \leqslant (-1)^n \leqslant 1$. Or, pour tout $n \in \mathbb{N}^*$, $\sqrt{n} > 0$. On peut donc diviser par \sqrt{n} dans l'inégalité précédente, sans changer le sens de l'inégalité. Dès lors, $-\frac{1}{\sqrt{n}} \leqslant \frac{(-1)^n}{\sqrt{n}} \leqslant \frac{1}{\sqrt{n}}$, et donc

$$1 - \frac{1}{\sqrt{n}} \leqslant u_n \leqslant 1 + \frac{1}{\sqrt{n}}$$

Par ailleurs, $\lim_{n\to+\infty}1-\frac{1}{\sqrt{n}}=\lim_{n\to+\infty}1+\frac{1}{\sqrt{n}}=1$. Donc, d'après le théorème des gendarmes, $(u_n)_{n\in\mathbb{N}^*}$ converge et

$$\lim_{n\to+\infty}u_n=1$$

Solution 11 – Pour tout $n \in \mathbb{N}$, on pose $u_n = a_n + ib_n$ avec $(a_n)_{n \in \mathbb{N}}$ et $(b_n)_{n \in \mathbb{N}}$ des suites réelles. Alors, pour tout $n \in \mathbb{N}$,

$$a_{n+1}+i\,b_{n+1}=\frac{1}{5}(3(a_n+i\,b_n)+2(a_n-i\,b_n))=\frac{1}{5}(5\,a_n+i\,b_n)=a_n+i\,\frac{b_n}{5}$$

On en déduit que pour tout $n \in \mathbb{N}$, $a_{n+1} = a_n$, donc $(a_n)_{n \in \mathbb{N}}$ est constante, et $b_{n+1} = \frac{b_n}{5}$, donc $(b_n)_{n \in \mathbb{N}}$ est géométrique de raison $\frac{1}{5}$. $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(b_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(b_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_0 = a$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_n = a$ et $(a_n)_{n \in \mathbb{N}}$ et $(a_n)_{n \in \mathbb{N}}$ converge vers $a_n = a$ et $(a_n)_{n \in \mathbb{N}}$ et $(a_n)_{n \in \mathbb{N}}$

Solution 12 – Pour tout $n \in \mathbb{N}$.

$$z_{n+1} = x_{n+1} + iy_{n+1}$$

$$= \frac{1}{2}x_n + \frac{1}{3}y_n + i\left(-\frac{1}{3}x_n + \frac{1}{2}y_n\right)$$

$$= \left(\frac{1}{2} - i\frac{1}{3}\right)x_n + \left(\frac{i}{2} + \frac{-1}{3}\right)y_n$$

$$= \left(\frac{1}{2} - i\frac{1}{3}\right)z_n$$

Ainsi $(z_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\left(\frac{1}{2}-i\frac{1}{3}\right)$. Or,

$$\left| \frac{1}{2} - i\frac{1}{3} \right| = \sqrt{\frac{1}{4} + \frac{1}{9}} = \frac{\sqrt{13}}{6} < 1.$$

On en déduit que $(z_n)_{n\in\mathbb{N}}$ converge vers 0, et donc que $(x_n)_{n\in\mathbb{N}}$ et $(y_n)_{n\in\mathbb{N}}$ convergent vers 0.

Solution 13 -

- 1. Si z_0 est un réel négatif, alors $|z_0|=-z_0$ et donc $z_1=0$. De plus, pour tout $n\in\mathbb{N}$, si $z_n=0$ alors $z_{n+1}=0$. Ainsi, par récurrence, $(z_n)_{n\in\mathbb{N}}$ est nulle à partir du rang 1.
- 2. Pour tout réel a positif, on a |a| = a et $\frac{1}{2}(a + |a|) = a$. Ainsi, si z_0 est un réel positif, alors la suite $(z_n)_{n \in \mathbb{N}}$ est constante.
- 3. Soit $n \in \mathbb{N}$. Supposons que z_n soit un complexe non-réel. C'est à dire $z_n = a + ib$ avec a et b réels et b non-nul. Alors

$$z_{n+1} = \frac{1}{2}(|z_n| + z_n) = (\frac{|z_n + a|}{2}) + i\frac{b}{2}$$

Donc $\Im m(z_{n+1}) = \frac{b}{2} \neq 0$, donc z_{n+1} est complexe non-réel.

Si z_0 est complexe non-réel, par récurrence, pour tout $n \in \mathbb{N}$, z_n n'est pas réel.

4. (a) Pour tout $n \in \mathbb{N}$, on a

$$\begin{split} z_{n+1} &= \frac{1}{2} (\left| r_n e^{i\theta_n} \right| + r_n e^{i\theta_n}) \\ &= \frac{1}{2} (r_n + r_n e^{i\theta_n}) \\ &= \frac{r_n}{2} (1 + e^{i\theta_n}) \\ &= \frac{r_n e^{i\theta_n/2}}{2} (e^{-i\theta_n/2} + e^{i\theta_n/2}) \\ &= \frac{r_n e^{i\theta_n/2}}{2} (2\cos(\theta_n/2)) = r_n e^{i\theta_n/2} \cos(\theta_n/2) \end{split}$$

Comme $\theta_n \in]-\pi; \pi[, \frac{\theta_n}{2} \in]\frac{-\pi}{2}; \frac{\pi}{2}[\text{ et donc } \cos(\frac{\theta_n}{2}) > 0.$

On en déduit qu'on a obtenu la forme exponentielle de z_{n+1} et donc que

$$\theta_{n+1} = \frac{\theta_n}{2}$$
.

Donc $(\theta_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $\frac{1}{2}$. Son terme général est donc :

$$\forall n \in \mathbb{N}, \ \theta_n = \frac{\theta_0}{2^n}.$$

(b) La question précédente permet d'obtenir la relation $r_{n+1} = r_n \cos\left(\frac{\theta_n}{2}\right)$. On montre le résultat demandé par récurrence :

Initialisation: $r_0 \prod_{k=1}^{0} \cos \left(\frac{\theta_0}{2^k} \right) = r_0$ par convention sur le produit vide.

Hérédité : Soit $n \in \mathbb{N}$. Supposons que $r_n = r_0 \prod_{k=1}^n \cos\left(\frac{\theta_0}{2^k}\right)$. Alors,

$$r_{n+1} = \cos\left(\frac{\theta_n}{2}\right) r_n$$

$$= \cos\left(\frac{\theta_n}{2}\right) \prod_{k=1}^n \cos\left(\frac{\theta_0}{2^k}\right)$$

$$= \cos\left(\frac{\theta_0}{2^n \cdot 2}\right) \prod_{k=1}^n \cos\left(\frac{\theta_0}{2^k}\right) \quad \text{par 4)a}$$

$$= \prod_{k=1}^{n+1} \cos\left(\frac{\theta_0}{2^k}\right)$$

Par récurrence, pour tout $n \in \mathbb{N}^*$, $r_n = \prod_{k=1}^n \cos\left(\frac{\theta_0}{2^k}\right)$.

(c) Pour tout $n \in \mathbb{N}$, $r_n \neq 0$ et $\frac{\theta_0}{2^n} \in]-\pi; \pi[\setminus \{0\}, \operatorname{donc} \sin(\frac{\theta_0}{2^n}) \neq 0$. D'où

$$\begin{split} \frac{w_{n+1}}{w_n} &= \frac{2^{n+1} r_{n+1} \sin(\frac{\theta_0}{2^{n+1}})}{2^n r_n \sin(\frac{\theta_0}{2^n})} \\ &= \frac{2 r_n \cos(\frac{\theta_0}{2^{n+1}}) \sin(\frac{\theta_0}{2^{n+1}})}{r_n \sin(\frac{\theta_0}{2^n})} \\ &= \frac{2 \cos(\frac{\theta_0}{2^{n+1}}) \sin(\frac{\theta_0}{2^{n+1}})}{\sin(\frac{\theta_0}{2^n})} \\ &= \frac{\sin(\frac{\theta_0}{2^n})}{\sin(\frac{\theta_0}{2^n})} = 1 \end{split}$$

Donc la suite $(w_n)_{n\in\mathbb{N}}$ est constante.

(d) Cela nous permet d'affirmer que pour tout $n \in \mathbb{N}$,

$$w_n = w_0$$

$$2^n r_n \sin\left(\frac{\theta_0}{2^n}\right) = r_0 \sin(\theta_0)$$

$$r_n = \frac{r_0 \sin(\theta_0)}{2^n \sin\left(\frac{\theta_0}{2^n}\right)}$$

$$\lim_{n\to +\infty}\frac{\theta_0}{2^n}=0,\, \mathrm{donc}\, \sin\left(\frac{\theta_0}{2^n}\right)\sim \frac{\theta_0}{2^n}\, \mathrm{et}$$

$$r_n\sim \frac{r_0\sin(\theta_0)}{2^n\frac{\theta_0}{2^n}}=\frac{r_0\sin(\theta_0)}{\theta_0}\cdot$$

Donc $(r_n)_{n\in\mathbb{N}}$ converge vers $\frac{r_0\sin(\theta_0)}{\theta_0}$.

Solution 14 -

1. On reconnait une suite géométrique. Déterminons le module de sa raison :

$$\left| \frac{1-i}{1-i\sqrt{3}} \right| = \frac{|1-i|}{|1-i\sqrt{3}|} = \frac{\sqrt{2}}{2} < 1$$

Donc $\lim_{n\to+\infty} u_n = 0$.

2. Pour tout $n \in \mathbb{N}^*$, on a $e^{i\frac{6n\pi}{3}} = 1$ et $e^{i\frac{(6n+3)\pi}{3}} = -1$, donc

$$v_{6n} = 1 + \frac{1}{6n}$$
, $v_{6n+3} = -\left(1 + \frac{1}{6n+3}\right)$

Ainsi, $\lim_{n \to +\infty} v_{6n} = 1$ et $\lim_{n \to +\infty} v_{6n+3} = -1$. Comme il existe deux suites extraites de vn'ayant pas la même limite, v n'a pas de limite.

3. Pour tout $n \in \mathbb{N}^*$, on a

$$|w_n| = \frac{1}{(1 + \frac{1}{n})^{n^2}}$$

On étudie le dénominateur :

$$(1+\frac{1}{n})^{n^2} = \exp\left(n^2\ln(1+\frac{1}{n})\right) = \exp\left(n \times \frac{\ln(1+\frac{1}{n})}{\frac{1}{n}}\right)$$

Comme $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$ et $\lim_{n\to +\infty} \frac{1}{n} = 0$, on a par compositions de limites que $\lim_{n\to +\infty} n \times 1$ $\frac{\ln(1+\frac{1}{n})}{\frac{1}{n}} = +\infty$. En composant avec le limite de l'exponentielle en $+\infty$, on en déduit

que $\lim_{n \to +\infty} (1 + \frac{1}{n})^{n^2} = +\infty$ et donc que $\lim_{n \to +\infty} |w_n| = 0$ et finalement, $\lim_{n \to +\infty} w_n = 0$

- 4. Pour tout $n \in \mathbb{N}^*$, $|\gamma_n| = n + 1$. Ainsi, la suite γ n'est pas bornée, donc ne converge pas.
- 5. Attention ici à ne pas prendre le logarithme d'un nombre complexe, car cela n'a pas de sens! Pour tout $n \in \mathbb{N}^*$,

$$|z_n| = \left(\sqrt{1^2 + \left(\frac{\pi}{n}\right)^2}\right)^n = \exp\left(\frac{n}{2}\ln\left(1 + \frac{\pi^2}{n^2}\right)\right) = \exp\left(\frac{\pi^2}{2n} \times \frac{n^2}{\pi^2}\ln\left(1 + \frac{\pi^2}{n^2}\right)\right)$$

Comme $\lim_{x\to 0}\frac{\ln(1+x)}{x}=1$ et $\lim_{n\to +\infty}\frac{\pi^2}{n^2}=0$, on a par compositions de limites que $\lim_{n\to +\infty}\frac{n^2}{\pi^2}\ln\left(1+\frac{\pi^2}{n^2}\right)=1$ et donc $\lim_{n\to +\infty}\frac{\pi^2}{2n}\times\frac{n^2}{\pi^2}\ln\left(1+\frac{\pi^2}{n^2}\right)=0$. En composant avec la limite de l'exponentielle en 0, on en déduit que $\lim_{n\to +\infty}|z_n|=1$.

Un argument de $1 + i \frac{\pi}{n}$ est Arctan $(\frac{\pi}{n})$ (car la partie réelle est positive), donc un argument de z_n est $t_n = n \operatorname{Arctan}(\frac{\pi}{n})$. Comme $\lim_{n \to +\infty} \frac{\pi}{n} = 0$ et que par dérivabilité de Arctan, on a $\lim_{x\to 0} \frac{\operatorname{Arctan}(x)}{x} = \operatorname{Arctan}'(0) = 1$, on obtient par composition de limites que $\lim_{n \to +\infty} \frac{n}{\pi} \operatorname{Arctan}(\frac{\pi}{n}) = 1 \text{ et donc que } \lim_{n \to +\infty} t_n = \pi.$

Finalement, en passant à la limite dans l'expression

$$z_n = |z_n| (\cos(t_n) + i \sin(t_n)),$$

on obtient que $\lim_{n\to+\infty} z_n = -1$.

Solution 15 -

1. Supposons que $(u_n)_{n\in\mathbb{N}}$ est croissante. Soit $n\in\mathbb{N}$. Alors

$$v_{n+1} = \frac{1}{n+1}(u_1 + u_2 + \dots + u_n + u_{n+1})$$

$$= \frac{1}{n+1}(u_1 + u_2 + \dots + u_n) + \frac{u_{n+1}}{n+1}$$

$$= \frac{n}{n+1}v_n + \frac{u_{n+1}}{n+1}$$

 u_{n+1} est plus grand que tous les réels u_1, \ldots, u_n , donc est plus grand que leur moyenne, c'est-à-dire que v_n . Donc

$$v_{n+1} \geqslant \frac{n}{n+1} v_n + \frac{v_n}{n+1}$$
$$\geqslant v_n$$

donc la suite $(v_n)_{n\in\mathbb{N}^*}$ est croissante.

2. Supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers 0. Soit $\epsilon>0$. Alors il existe $N\in\mathbb{N}^*$ tel que pour tout $n \ge N$, $|u_n| \le \varepsilon$. Alors, on a par inégalité triangulaire, pour tout $n \ge N$

$$|v_n| \leq \frac{1}{n}(|u_1| + |u_2| + \dots + |u_n|)$$

$$\leq \frac{1}{n}(|u_1| + |u_2| + \dots + |u_N| + |u_{N+1}| + \dots + |u_n|)$$

$$\leq \frac{1}{n}(|u_1| + |u_2| + \dots + |u_N| + \epsilon + \dots + \epsilon)$$

où il y a n-N termes ϵ . En notant $c=|u_1|+|u_2|+\cdots+|u_N|$ (qui est une constante réelle), on a

$$|v_n| \leqslant \frac{c}{n} + \frac{n-N}{n}\epsilon \leqslant \frac{c}{n} + \epsilon.$$

Comme $\frac{c}{n} \xrightarrow[n \to +\infty]{} 0$, il existe $N_1 \in \mathbb{N}$ tel que pour tout $n \geqslant N_1$, on ait $\frac{c}{n} \leqslant \epsilon$. Ainsi, pour $n \geqslant \max(N, N_1)$, on a

$$|v_n| \leq 2\epsilon$$
.

Donc $(v_n)_{n\in\mathbb{N}^*}$ converge vers 0.

3. Si $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$, on pose $(w_n)_{n\in\mathbb{N}^*}=(u_n-\ell)_{n\in\mathbb{N}^*}$. La suite $(w_n)_{n\in\ell}$ converge donc vers 0.

$$v_n - \ell = \frac{u_1 + \dots + u_n}{n} - \frac{\ell + \dots + \ell}{n}$$
$$= \frac{(u_1 - \ell) + \dots + (u_n - \ell)}{n}$$

D'après la question précédente,on en déduit que $(v_n - \ell)_{n \in \mathbb{N}^*}$ converge vers 0 et donc que $(v_n)_{n \in \mathbb{N}^*}$ converge vers ℓ .

4. On prend $(u_n)_{n\in\mathbb{N}^*} = \left((-1)^n\right)_{n\in\mathbb{N}^*}$. Cette suite ne converge pas car elle a deux soussuites qui convergent vers des valeurs différentes (la suite constante égale à 1 et la suite constante égale à -1). Pour tout $n\in\mathbb{N}$, $v_{2n}=0$ et $v_{2n+1}=\frac{-1}{2n+1}$. On en déduit que pour tout $n\in\mathbb{N}^*$, $|v_n|\leqslant 0$ donc $(v_n)_{n\in\mathbb{N}^*}$ converge vers 0.

Solution 16 -

- 1. f est continue sur \mathbb{R} . Elle y est strictement croissante en tant que somme de deux fonctions strictement croissante (exp et $x \mapsto x$). De plus, $\lim_{-\infty} f = -\infty$ et $\lim_{+\infty} f = +\infty$. On en déduit que f réalise une bijection de \mathbb{R} vers \mathbb{R} . Ainsi, pour tout $n \in \mathbb{N}$, f(x) = n possède une unique solution réelle x_n .
- 2. On a que pour tout $n \in \mathbb{N}$, $f(x_n = n < n + 1 = f(x_{n+1}))$. Comme f est strictement croissante, on en déduit que $x_n < x_{n+1}$. Donc $(x_n)_{n \in \mathbb{N}}$ est strictement croissante.
- 3. Tout suite monotone admet une limite, donc $(x_n)_{n\in\mathbb{N}}$ admet une limite ℓ (finie ou $+\infty$). Supposons que ℓ est fini. On a que pour tout $n\in\mathbb{N}$,

$$f(x_n) = n$$

Par continuité de f, en prenant la limite quand n tend vers $+\infty$, on obtient

$$f(\ell) = +\infty,$$

ce qui est absurde. Donc $\ell = +\infty$.

Solution 17 -

1. Pour tout $n \in \mathbb{N}$,

$$u_{n+1} = \cos(n+1) = \cos(n)\cos(1) - \sin(n)\sin(1) = u_n u_1 - v_n v_1.$$

$$v_{n+1} = \sin(n+1) = \sin(n)\cos(1) + \cos(n)\sin(1) = v_n u_1 + u_n v_1.$$

2. Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ convergent respectivement vers x et y, alors $(u_{n+1})_{n\in\mathbb{N}}$ et $(v_{n+1})_{n\in\mathbb{N}}$ convergent respectivement vers x et y également. En passant à la limite dans les relations précédentes, on obtient

$$x = xu_1 - yv_1, y = yu_1 + xv_1.$$

On peut alors en déduire que $x = \frac{yv_1}{u_1 - 1}$ et donc en remplaçant dans la deuxième égalité,

$$\begin{cases} (1-u_1)x & +v_1y & = & 0 \\ -u_1x & +(1-v_1)y & = & 0 \end{cases} \iff \begin{cases} x & +(2v_1-1)y & = & 0 \\ -u_1x & +(1-v_1)y & = & 0 \end{cases}$$
$$\iff \begin{cases} x & +y & = & 0 \\ (1-v_1+u_1+2u_1v_1)y & = & 0 \end{cases}$$

 $u_1 \in]0;1[$ et $v_1 \in]0;1[$, donc $-v_1+u_1>-1$ et $1-v_1+u_1>0$ et $1-v_1+u_1+2u_1v_1>0$. On en déduit que le système est de Cramer et admet une unique solution. Comme (0;0) est solution, on en déduit que x=0 et y=0.

3. Pour tout $n \in \mathbb{N}$, on a $u_n^2 + v_n^2 = 1$, donc si on est dans le cas précédent, en passant à la limite, on a $x^2 + y^2 = 1$. Ce qui contredit x = y = 0, on en déduit que u et v ne peuvent être toutes les deux convergentes.

Il nous reste à montrer qu'il n'est pas possible qu'une seule de ces suites convergent. Supposons que $(u_n)_{n\in\mathbb{N}}$ converge vers une limite finie x. Alors $(u_{n+1})_{n\in\mathbb{N}}$ converge vers cette même limite. D'après la question 1, on a $v_n = \frac{1}{v_1}(u_{n+1} - u_n u_1)$ et on en déduit que $(v_n)_{n\in\mathbb{N}}$ converge également. C'est absurde, donc $(u_n)_{n\in\mathbb{N}}$ ne converge pas.

On prouve de manière similaire de $(v_n)_{n\in\mathbb{N}}$ ne converge pas et on a bien montré que $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ divergent.

Solution 18 – Remarquons tout d'abord que la suite u est bien définie.

1. On étudie les fonctions $f: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^2+1 \end{array}$ et $g: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^2-x+1 \end{array}$

g est une fonction polynomiale de degré 2 dont le discriminant est -3, donc elle ne s'annule pas et garde un signe constant. Elle est donc toujours strictement positive. Donc, pour tout $n \in \mathbb{N}$,

$$u_{n+1} - u_n = f(u_n) - u_n = g(u_n) > 0.$$

Donc la suite $(u_n)_{n\in\mathbb{N}}$ est strictement croissante.

2. La suite $(u_n)_{n\in\mathbb{N}}$ admet donc pour limite un réel ou $+\infty$. Or, comme f est continue, si u converge vers un réel, celui-ci doit être un point fixe de f, c'est à dire un zéro de g. Or g ne s'annule pas, donc f n'a pas de point fixe, donc u ne converge pas vers un réel fini. D'où $\lim_{n\to+\infty} u_n = +\infty$.

Solution 19 -

1. On définit sur \mathbb{R} $g: x \mapsto f(x) - x$.

g est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $g'(x) = \frac{-\sin(x)}{2} - 1 < 0$, donc *g* est strictement décroissante sur \mathbb{R} .

g est de plus continue, $\lim_{-\infty}g=+\infty$ et $\lim_{+\infty}g=-\infty$, donc par le théorème de la bijection, g est une bijection de $\mathbb R$ dans $\mathbb R$. Donc 0 a un unique antécédent par g et f a un unique point fixe ℓ .

2. f est continue sur \mathbb{R} , dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $|g'(x)| = \frac{1}{2}|\sin(x)| \leqslant \frac{1}{2}$,

Donc par l'inégalité des accroissements finis, f est $\frac{1}{2}$ -lipschitzienne sur \mathbb{R} .

On pose pour tout $n \in \mathbb{N}$, $P_n : \langle |u_n - \ell| \leq \frac{1}{2^n} |u_0 - \ell| \rangle$. Montrons par récurrence qu'elle vraie pour tout $n \in \mathbb{N}$.

Initialisation : $|u_0 - \ell| \le \frac{1}{2^0} |u_0 - \ell|$, donc P_0 est vraie.

Hérédité: Soit $n \in \mathbb{N}$ fixé, on suppose P_n .

$$\begin{aligned} |u_{n+1} - \ell| &= \left| f(u_n) - f(\ell) \right| \\ &\leqslant \frac{1}{2} |u_n - \ell| \\ &\leqslant \frac{1}{2} \frac{1}{2^n} |u_0 - \ell| \\ &\leqslant \frac{1}{2^{n+1}} |u_0 - \ell| \end{aligned}$$

Par récurrence, pour tout $n \in \mathbb{N}$, $|u_n - \ell| \le \frac{1}{2^n} |u_0 - \ell|$, donc $\lim_{n \to +\infty} |u_n - \ell| = 0$ et $(u_n)_{n \in \mathbb{N}}$ converge vers ℓ .

Solution 20 -

1. On définit sur \mathbb{R} $g: x \mapsto f(x) - x$. g est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$,

$$g'(x) = (1-2x)e^{-x}-1.$$

g' est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$,

$$g''(x) = (2x-3)e^{-x}$$
.

 $\lim_{x\to-\infty}g'(x)=+\infty$ et par croissances comparées, $\lim_{x\to+\infty}g'(x)=-1$ On en déduit le tableau de variation de g'.

x	$-\infty$	$\frac{3}{2}$		+∞
g''(x)	_	0	+	
g'	+∞	$-2e^{-3/2}-1$		-1

Comme g' est strictement décroissante sur $]-\infty,\frac{3}{2}]$ et que g'(0)=0, on obtient son signe sur $]-\infty,\frac{3}{2}]$. De plus, g' est croissante sur $[\frac{3}{2},+\infty[$ et $\lim_{+\infty}g'=-1<0$, donc g' est négative sur $[\frac{3}{2},+\infty[$

On en déduit le signe de g' et les variations de g

x	$-\infty$		0	+∞
g'(x)		+	0	-
g	-∞		1	-∞

Comme g est continue sur \mathbb{R}_- et que g(0)=1 et $\lim_{t\to\infty}g=-\infty$, d'après le théorème des valeurs intermédiaires, g s'annule sur \mathbb{R}_- . g étant strictement croissante sur \mathbb{R}_- ce point d'annulation est unique et non-nul.

De même, g s'annule exactement une fois sur \mathbb{R}_+ .

Donc 0 a exactement deux antécédents par g, un strictement positif et un strictement négatif. Les zéros de g étant les points fixes de f, on en déduit que f a exactement deux points fixes, un strictement positif et un strictement négatif.

$$g(1) = 5e^{-1} - 1 > 0.$$

 $g(\frac{5}{4}) = \frac{7}{2}e^{-5/4} - \frac{5}{4} < 0.$
 $g(\frac{5}{4}) < g(a) < g(1)$ et g est strictement décroissante sur \mathbb{R}_+ , donc $1 < a < \frac{5}{4}$.

2. f est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $f'(x) = (1 - 2x)e^{-x}$.

f' est négative sur $[1, \frac{5}{4}]$ donc f est décroissante sur $[1, \frac{5}{4}]$.

$$f(1) = 3e^{-1} < \frac{5}{4} \text{ et } f(\frac{5}{4}) = \frac{7}{2}e^{-5/4} > 1.$$

Donc $[1, \frac{5}{4}]$ est stable par f (et la suite $(u_n)_{n \in \mathbb{N}}$ est bien définie et tous ses termes sont dans $[1, \frac{5}{4}]$).

3. f' est dérivable sur $[1, \frac{5}{4}]$ et pour tout $x \in [1, \frac{5}{4}]$,

$$f''(x) = (2x-3)e^{-x} < 0.$$

Donc f' est décroissante sur $[1, \frac{5}{4}]$.

$$f'(1) = -e^{-1}$$
 et $f'(\frac{5}{4}) = -\frac{3}{2}e^{-5/4} = -\beta$ avec $\beta \in]0,1[$.

Ainsi, pour tout $x \in]1, \frac{5}{4}[, |f'(x)| \leq \beta.$

D'après l'inégalité des accroissements finis, f est β -lipschitzienne sur $[1, \frac{5}{4}]$.

On pose pour tout $n \in \mathbb{N}$, $P_n : \langle u_n - a | \leq \beta^n \frac{1}{4} \rangle$. Montrons par récurrence qu'elle est vraie pour tout $n \in \mathbb{N}$.

Initialisation : $|u_0 - a| \leq \frac{1}{4} = \beta^0 \frac{1}{4}$, donc P_0 est vraie.

Hérédité : Soit $n \in \mathbb{N}$ fixé, on suppose P_n .

$$|u_{n+1} - a| = |f(u_n) - f(a)|$$

$$\leq \beta |u_n - a|$$

$$\leq \beta \beta^n |u_0 - a|$$

$$\leq \beta^{n+1} |u_0 - a|$$

Par récurrence, pour tout $n \in \mathbb{N}$, $|u_n - a| \le \beta^n |u_0 - a|$, donc $\lim_{n \to +\infty} |u_n - a| = 0$ et $(u_n)_{n \in \mathbb{N}}$ converge vers a.

$$\frac{\beta^n}{4} \leqslant 10^{-4} \Longleftrightarrow \beta^n \leqslant 4 \times 10^{-4} \Longleftrightarrow n \geqslant \frac{\log(4 \times 10^{-4})}{\log(\beta)}.$$

Donc pour n entier supérieur à $\frac{\log(4 \times 10^{-4})}{\log(\beta)}$, u_n est une valeur approchée de a à 10^{-4} près.

Solution 21 – On définit sur [0,2] la fonction $f: x \mapsto \sqrt{2-x}$.

f est continue et strictement décroissante sur [0,2], de plus $f(0) = \sqrt{2}$ et f(2) = 0, donc d'après le théorème de la bijection, f réalise une bijection de [0,2] sur $[0,\sqrt{2}]$. Entre autres, [0,2] est stable par f donc $(u_n)_{n\in\mathbb{N}}$ est bien définie.

De même, $g: x \mapsto f(x) - x$ est strictement décroissante et continue sur [0,2], donc réalise une bijection de [0,2] sur $[g(2),g(0)]=[-2,\sqrt{2}]$. Donc g a un unique zéro sur [0,2] et f un unique point fixe.

Pour tout $x, y \in [0, 2]$ tels que $x \le y$, on a $f(x) \ge f(y)$, puis $f(f(x)) \le f(f(y))$ par décroissance de f.

Donc $f \circ f$ est croissante.

$$u_0 = \frac{7}{4}.$$

$$u_1 = f(u_0) = \frac{1}{2}.$$

$$u_2 = f(u_1) = \sqrt{\frac{3}{2}}.$$

$$u_3 = f(u_2) = \sqrt{2 - \sqrt{\frac{3}{2}}} = \sqrt{\frac{4 - \sqrt{6}}{2}} > \frac{1}{2}.$$

Donc $u_0 > u_2$ et $u_1 < u_3$.

Par récurrence, pour tout $n \in \mathbb{N}$, $u_{2n} > u_{2n+2}$ et $u_{2n+1} < u_{2n+3}$, donc $(u_{2n})_{n \in \mathbb{N}}$ est décroissante et $(u_{2n+1})_{n \in \mathbb{N}}$ est croissante.

Ces deux suites sont bornées et monotones, donc convergentes. Comme $f \circ f$ est continue, elles convergent forcément vers un point fixe de $f \circ f$.

On admet pour l'instant que $f \circ f$ n'a qu'un seul point fixe sur [0,2]. Comme f(f(1)) = 1, ce point fixe est 1 et ces deux suites convergent donc vers 1.

Comme les suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ convergent vers 1 toutes les deux, $(u_n)_{n\in\mathbb{N}}$ converge vers 1.

• Revenons à présent aux points fixes de $f \circ f$.

On va déterminer ces points fixes. On pose $h: x \mapsto f(f(x)) - x$ définie sur [0,2]. Alors, h est dérivable sur]0,2[et pour tout $x \in \mathbb{R}$, on a

$$h'(x) = \frac{1}{2\sqrt{2-\sqrt{2-x}}} \times \frac{-1}{2\sqrt{2-x}} \times (-1) - 1$$
$$= \frac{1}{4\sqrt{(2-\sqrt{2-x})(2-x)}} - 1$$

Déterminons le signe de h'. Pour tout $x \in]0,2[$, on a

$$h'(x) > 0 \iff \frac{1}{\sqrt{(2 - \sqrt{2 - x})(2 - x)}} > 4 \iff (2 - \sqrt{2 - x})(2 - x) < \frac{1}{16}.$$

Ainsi, en posant $k(x) = (2 - \sqrt{2 - x})(2 - x) - \frac{1}{16}$, le signe de k(x) est opposé de celui de h'(x). k est dérivable sur]0,2[et pour tout $x \in$]0,2[, on a

$$k'(x) = \frac{1}{2\sqrt{2-x}}(2-x) - (2-\sqrt{2-x})$$
$$= \frac{1}{2}\sqrt{2-x} - (2-\sqrt{2-x})$$
$$= -2 + \frac{3}{2}\sqrt{2-x}$$

On détermine alors le signe de k'.

$$k'(x) > 0 \iff -2 + \frac{3}{2}\sqrt{2 - x} > 0$$

$$\iff \sqrt{2 - x} > \frac{4}{3}$$

$$\iff 2 - x > \frac{16}{9}$$

$$\iff x < \frac{2}{9}$$

$$k(0) = 2(2 - \sqrt{2}) - \frac{1}{16} \approx 1.11 > 0.$$

$$k(\frac{2}{9}) = \frac{16}{9}(2 - \frac{4}{3}) - \frac{1}{16} \approx 1.12 > 0.$$

On en déduit le tableau de variations de k :

x	0	$\frac{2}{9}$		2
k'(x)		+ 0	_	
k	k(0)	$k(\frac{2}{9})$		$\frac{-1}{16}$

Ainsi, k est strictement décroissante et continue sur $[\frac{2}{9},2]$ et $k(\frac{2}{9})$ et k(2) sont de signes stricts opposés.

A l'aide du théorème de la bijection, on en déduit qu'il existe un unique $\alpha \in]\frac{2}{\alpha}, 2[$ tel que $k(\alpha) = 0$.

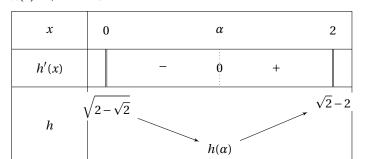
Sur $[0, \alpha[$, k est donc strictement positive et elle est strictement négative sur $]\alpha, 2]$.

Cela nous permet d'obtenir le signe de h' et donc les variations de h.

$$h(0) = \sqrt{2 - \sqrt{2}} > 0$$

$$h(2) = \sqrt{2} - 2 < 0$$

réels et complexes



On ne connaît pas α et on ne peut donc pas déterminer la valeur de $h(\alpha)$. Toutefois, h est strictement croissante sur $[\alpha, 2]$ et h(2) < 0, donc $h(\alpha) < 0$ (et donc h ne s'annule pas sur $[\alpha, 2]$.

Enfin, comme h est continue et strictement décroissante sur $[0, \alpha]$ et que h(0) et $h(\alpha)$ sont de signes opposés, d'après le théorème de la bijection, il existe un unique $\beta \in [0, \alpha]$ tel que $h(\beta) = 0.$

Finalement cela justifie que h ne s'annule qu'une fois sur [0,2] et donc que $f \circ f$ n'a qu'un point fixe sur [0,2]. Comme 1 est un point fixe de $f \circ f$, c'est bien le seul.

Solution 22 – On note
$$f: x \mapsto \frac{1}{2} \left(x + \frac{2}{x} \right)$$
.

f est dérivable et pour tout x > 0, $f'(x) = \frac{1}{2} \left(1 - \frac{2}{x^2} \right)$. On en déduit le tableau de variations de f:

x	0	$\sqrt{2}$	+∞
f'(x)		- 0	+
k	+∞	$\sqrt{2}$	+∞

Ainsi, pour tout $x \in [\sqrt{2}, +\infty[$, $f(x) \geqslant \sqrt{2}$, donc $f(x) \in [\sqrt{2}, +\infty[$. On en déduit que $[\sqrt{2}, +\infty[$ est stable par f et (comme $u_0 \ge \sqrt{2}$) que les termes de la suite u sont bien définis et sont tous dans $[\sqrt{2}, +\infty[$.

On remarque que $u_1 = \frac{3}{2}$. On a donc que $u_1 < u_0$.

Pour tout $n \in \mathbb{N}$, on pose P_n : « $u_{n+1} < u_n$ »

Initialisation : On a vu que $u_1 < u_0$.

Hérédité : Soit $n \in \mathbb{N}$ tel que P_n soit vraie. C'est-à-dire que $u_{n+1} < u_n$. Comme f est strictement croissante sur $[\sqrt{2}; +\infty[$, on a

$$f(u_{n+1}) < f(u_n)$$

$$u_{n+2} < u_{n+1}$$

Donc P_{n+1} est vraie **Conclusion :** Par récurrence, pour tout $n \in \mathbb{N}$, $u_{n+1} < u_n$ et la suite u est donc strictement décroissante.

u est strictement décroissante et minorée par $\sqrt{2}$, donc par le théorème de la limite monotone, elle converge.

Comme f est continue sur $[\sqrt{2}, +\infty[$, u converge forcément vers un point fixe de f sur $[\sqrt{2}, +\infty[$

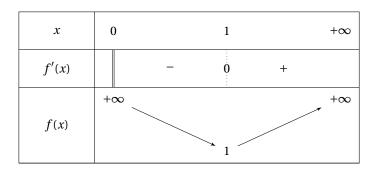
Pour tout $x \in [\sqrt{2}, +\infty[$, comme x est positif,

$$f(x) = x \iff x + \frac{2}{x} = 2x \iff x^2 = 2 \iff x = \sqrt{2}$$

Ainsi, $\sqrt{2}$ est le seul point fixe de f sur $[\sqrt{2}, +\infty[$, donc la suite $(u_n)_{n\in\mathbb{N}}$ converge vers $\sqrt{2}$.

Solution 23 -

1. (a) f est dérivable et pour tout x > 0, $f'(x) = 1 - \frac{1}{x}$ On en déduit le tableau de variations de f (les limites de f sont immédiates) :





- (b) Le tableau de variation nous montre que pour tout x > 0, $f(x) \ge 1$.
- 2. (a) On conjecture que lorsque $a \ge 1$, la suite u décroit vers sa limite 1. Si a < 1, on a $u_1 \ge 1$ et on se retrouve dans le cas précédent à partir du rang 1.
 - (b) Pour tout $n \in \mathbb{N}$,

$$u_{n+1} = u_n \iff -\ln(u_n) = 0 \iff u_n = 1$$

Donc la suite u est constante si et seulement si a = 1.

- (c) i. D'après le tableau de variations, $[1, +\infty[$ est une partie stable par f. Comme $u_0 > 1$, on en déduit que tous les termes de la suite sont dans $[1, +\infty[$.
 - ii. Pour tout $n \in \mathbb{N}$,

$$u_{n+1} - u_n = -\ln(u_n) \leqslant 0$$

car $u_n \geqslant 1$. Donc u est décroissante.

iii. Comme u est décroissante et minorée par 1, elle converge vers un réel ℓ d'après le théorème de la limite monotone. Comme f est continue sur $[1,+\infty[$, u converge nécessairement vers un point fixe de f.

Or, pour tout $x \ge 1$, on a

$$f(x) = x \iff \ln(x) = 0 \iff x = 1$$

L'unique point fixe de f étant 1, on a $\ell = 1$.

(d) Si a < 1, alors $u_1 = f(a) \ge 1$ et on appliquer l'étude précédente à partir du rang 1. On en déduit que u est décroissante à partir du rang 1 et qu'elle converge vers 1.

Maths 2025/26 réels et complexes MPSI

Solution 24 -

1. On pose $h: x \mapsto f(x) - x$ définie sur [0, 1]. f est continue donc h aussi.

 $h(0) = f(0) \ge 0$ car f est à valeurs dans [0, 1]

 $h(1) = f(1) - 1 \le 0$ car f est à valeurs dans [0, 1].

D'après le théorème des valeurs intermédiaires, il existe $a \in [0,1]$ tel que h(a) = 0, c'està-dire f(a) = a.

- 2. f g est continue sur [0,1] et ne s'annule pas par hypothèse, donc par la contraposée du théorème des valeurs intermédiaires, f g garde un signe constant.
- 3. (a) On procède par récurrence.

Initialisation : D'après la question précédente, $u_0 = a$ est un point fixe de f.

Hérédité : Soit $n \in \mathbb{N}$. On suppose que u_n est un point fixe de f. Alors :

$$f(u_{n+1}) = f(g(u_n)) = g(f(u_n))$$

d'après l'hypothèse de l'exercice. Par hypothèse de récurrence, on a donc

$$f(u_{n+1}) = g(u_n) = u_{n+1}$$

Donc u_{n+1} est un point fixe de f.

Par récurrence, pour tout $n \in \mathbb{N}$, u_n est un point fixe de f.

(b) Pour tout $n \in \mathbb{N}$,

$$u_{n+1} - u_n = g(u_n) - f(u_n)$$

Or, on a montré que g - f est de signe constant, donc $u_{n+1} - u_n$ est de signe constant, ce qui signifie que la suite u est monotone.

- (c) u est monotone et bornée par 0 et 1, donc par le théorème de la limite monotone, elle admet une limite finie $\ell \in [0,1]$.
- (d) Pour tout $n \in \mathbb{N}$, $f(u_n) = u_n$. En passant à la limite, par continuité de f, on a que $f(\ell) = \ell$.

Pour tout $n \in \mathbb{N}$, $u_{n+1} = g(u_n)$, donc en passant à la limite, par continuité de g, on a que $\ell = g(\ell)$.

4. On a donc $g(\ell) = \ell = f(\ell)$, ce qui contredit l'hypothèse. On en déduit qu'il existe $\alpha \in [0,1]$ tel que $f(\alpha) = g(\alpha)$.

Solution 25 – On a bien $A \subset [0,1]$. Soient x et y dans [0,1] avec x < y et n_0 tels que :

$$\frac{1}{2^{n_0}} \leqslant y - x$$

Posons $k_0 = \max \left\{ k \in \mathbb{N} \mid \frac{k}{2^{n_0}} \leqslant x \right\}$. On a alors :

$$x \leqslant \frac{k_0 + 1}{2^{n_0}} \leqslant y.$$

Solution 26 -

1. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ une suite convergente. On note $\ell\in\mathbb{R}$ sa limite. Soit $\varepsilon>0$. Il existe $N\in\mathbb{N}$ tel que pour tout $n\geqslant N$, $|u_n-\ell|<\varepsilon$.

Soient alors $p, q \in \mathbb{N}$ tels que $p \ge N$ et $q \ge N$. D'après l'inégalité triangulaire,

$$|u_p - u_a| \leq |u_p - \ell| + |u_a - \ell| < 2\varepsilon$$

Ce qui montre que $(u_n)_{n\in\mathbb{N}}$ est bien de Cauchy.

2. (a) Soit $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy. Il existe $N\in\mathbb{N}$ tel que pour tout $n\geqslant N$, on ait $|u_n-u_N|\leqslant 1$. Dès lors, par inégalité triangulaire, pour tout $n\geqslant N$,

$$|u_n| \le |u_n - u_n| + |u_N| \le 1 + |u_N|$$

Dès lors, en notant $M = \max\{|u_0|; |u_1|; ...; |u_{N-1}|; 1 + |u_N|\}$, on a

$$\forall n \in \mathbb{N}, \quad |u_n| \leq M$$

Ce qui montre que $(u_n)_{n\in\mathbb{N}}$ est bornée.

(b) Soit $(u_n)_{n\in\mathbb{N}}$ une suite de Cauchy. Alors, d'après la question précédente, la suite $(u_n)_{n\in\mathbb{N}}$ est bornée. Donc, d'après le théorème de Bolzano-Weierstrass, il existe $\ell\in\mathbb{R}$ et $\varphi:\mathbb{N}\to\mathbb{N}$ strictement croissante telle que $\left(u_{\varphi(n)}\right)_{n\in\mathbb{N}}$ converge vers ℓ . Soit $\varepsilon>0$. Par convergence de $\left(u_{\varphi(n)}\right)_{n\in\mathbb{N}}$ vers ℓ , il existe $N_1\in\mathbb{N}$ tel que

$$\forall n \geqslant N_1$$
, $|u_{\omega(n)} - \ell| < \varepsilon$

De plus, puisque $(u_n)_{n\in\mathbb{N}}$ est de Cauchy, il existe $N_2\in\mathbb{N}$ tel que

$$\forall p, q \geqslant N_2, \quad |u_p - u_q| < \varepsilon$$

Posons $N = \max\{N_1, N_2\}$. Alors, pour $n \ge N$, on a $\varphi(n) \ge n \ge N$, d'où :

$$|u_n - \ell| \le |u_n - u_{\varphi(n)}| + |u_{\varphi(n)} - \ell| < 2\varepsilon$$

Ce qui montre que $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Quelques vidéos pour se cultiver:

Suites récurrentes complexes et... fractales :

🖱 Beyond the Mandelbrot set, intro to holomorphic dynamics - - 3Blue1Brown 🛣

♣ Du trèfle à brouter...

♠ Qui s'y frotte s'y pique!

♥ À connaître par cœur.

♦ Calculatoire, risque de rester sur le carreau!