7 Rappels et compléments sur les suites

La nature est un livre écrit en langage mathématiques.

Galilée, polymathe (1564-1642).

I – Généralités sur les suites réelles

1 - Introduction

Intuitivement, une suite réelle est une liste (infinie) de nombres réels. Par exemple, la liste (en ordre croissant) des puissances de 2 est une suite :

On convient usuellement de poser $u_0 = 1$, puis $u_1 = 2$, puis $u_2 = 4$, etc.

D'autres choix sont tout à fait possibles : on peut poser $v_1 = 1$, puis $v_2 = 2$, puis $v_3 = 4$, etc.

On peut également poser $w_5 = 1$, puis $w_6 = 2$, puis $w_7 = 4$, etc.

La suite notée (u_n) est donc une fonction u de \mathbb{N} dans \mathbb{R} . De même, la suite (v_n) est une fonction v de \mathbb{N}^* dans \mathbb{R} . Enfin, la suite (w_n) est une fonction w de $[5; +\infty[$ dans \mathbb{R} .

Définition 7.1 – On appelle **suite réelle** toute famille $(u_n)_{n\in\mathbb{N}}$ de nombres réels indexée par \mathbb{N} , c'est-à-dire toute application u définie sur \mathbb{N} et à valeurs dans \mathbb{R} . On la note u ou encore $(u_n)_{n\in\mathbb{N}}$.

Notation 7.2 – On note $\mathbb{R}^{\mathbb{N}}$ l'ensemble des suites réelles indexées par \mathbb{N} .

Remarque 7.3 – Une suite réelle de terme général u_n peut aussi être indexée par les entiers naturels supérieurs à un entier n_0 . Une telle suite est notée $(u_n)_{n\geqslant n_0}$. Par exemple, la suite (u_n) définie par $u_n=\sqrt{n-2}$ n'est définie que pour $n\geqslant 2$. On dira alors que $(u_n)_n$ est définie sur $I=[2;+\infty]$ et on notera la suite $(u_n)_{n\geqslant 2}$.

ATTENTION! Pour une rédaction rigoureuse, on distinguera bien u_n qui est un nombre car c'est le terme de rang n de la suite et $u = (u_n)_{n \in \mathbb{N}}$ qui est la suite elle-même. C'est la même chose que de ne pas confondre la fonction f et réel f(x).

2 – Modes de définition d'une suite

On peut définir une suite réelle $(u_n)_{n\in\mathbb{N}}$ de plusieurs manières différentes :

▶ **de manière explicite :** chacun des termes de la suite est donné en fonction de *n*.

Exemple 7.4 – La suite $(u_n)_{n\in\mathbb{N}}$ définie par : $\forall n\in\mathbb{N}$, $u_n=\exp(-n+1)$ est définie de manière explicite. Avec cette définition, on connaît directement la valeur de chaque terme de la suite. Ici, $u_{20}=\exp(-19)$.

▶ de manière implicite : tous les termes de la suite sont correctement définis mais on ne dispose pas de la valeur explicite de chacun de ses termes.

Exemple 7.5 – Pour tout $n \in \mathbb{N}$, la fonction $f_n : \begin{bmatrix} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^5 + nx - 1 \end{bmatrix}$ réalise une bijection de \mathbb{R}^+ dans $[-1; +\infty[$ donc pour tout $n \in \mathbb{N}$, il existe un unique nombre $u_n \in \mathbb{R}^+$ tel que $f_n(u_n) = 0$. On définit ainsi une suite $(u_n)_{n \in \mathbb{N}}$ et, a priori, il n'est pas possible d'obtenir, pour tout $n \in \mathbb{N}$, une expression directe de u_n en fonction de n.

Exemple 7.6 – Soit la suite $(w_n)_{n \in \mathbb{N}^*}$ telle que pour tout $n \in \mathbb{N}^*$, w_n soit le n-ième nombre premier. On peut facilement calculer les premiers termes : $w_1 = 2$, $w_2 = 3$, $w_3 = 5$, $w_4 = 7$, $w_5 = 11$... Cependant, obtenir une formule donnant w_n en fonction de n est très difficile.

▶ **par une relation de récurrence :** on définit explicitement le (ou les) premier(s) terme(s) de la suite puis chaque terme de la suite est défini à l'aide du (ou des) précédent(s).

Exemple 7.7 – On peut définir deux suites $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ par :

$$\begin{aligned} u_0 &= 1 \qquad \text{et} \qquad \forall n \in \mathbb{N}, \ u_{n+1} = 2u_n + u_n^2, \\ v_0 &= 0, \ v_1 = 1 \qquad \text{et} \qquad \forall n \in \mathbb{N}, \ v_{n+2} = \exp(v_{n+1} - v_n). \end{aligned}$$

Là encore, on ne peut pas, *a priori*, déterminer pour tout $n \in \mathbb{N}$ une expression directe de u_n et v_n en fonction de n. On peut par contre calculer les termes de ces suites de proche en proche. Ainsi,

$$u_1 = 3$$
 $u_2 = 15$ $u_3 = 255...$ $v_2 = e$ $v_3 = e^{e-1}...$

On dit que $(u_n)_{n\in\mathbb{N}}$ est une suite récurrente d'ordre 1 et $(v_n)_{n\in\mathbb{N}}$ une suite récurrente d'ordre 2.

ATTENTION! Pour définir une suite par une relation de récurrence, il y a tout de même des précautions à prendre : il se peut que la donnée d'un premier terme et d'une relation de récurrence ne définissent pas correctement une suite.

Par exemple, en posant $u_0 = \frac{1}{4}$ et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{u_n}{1 - u_n}$, on ne définit pas correctement la suite $(u_n)_{n \in \mathbb{N}}$: on

aurait $u_1 = \frac{1}{3}$, $u_2 = \frac{1}{2}$, $u_3 = 1$ et u_4 n'est pas défini!

3 - Opérations sur les suites

Définition 7.8 – On peut définir sur $\mathbb{R}^{\mathbb{N}}$ trois opérations :

• la **somme** $(s_n)_{n\in\mathbb{N}}=(u_n)_{n\in\mathbb{N}}+(v_n)_{n\in\mathbb{N}}$ des suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ est la suite définie par

$$\forall n \in \mathbb{N}, \ s_n = u_n + v_n,$$

• la **multiplication interne** $(p_n)_{n\in\mathbb{N}}=(u_n)_{n\in\mathbb{N}}\times(v_n)_{n\in\mathbb{N}}$ des suites réelles $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_n\in\mathbb{N}$ est la suite définie par

$$\forall n \in \mathbb{N}, \ p_n = u_n \times v_n,$$

• la **multiplication externe** $(w_n)_{n\in\mathbb{N}} = \lambda$ • $(u_n)_{n\in\mathbb{N}}$ de la suite $(u_n)_{n\in\mathbb{N}}$ par le réel $\lambda \in \mathbb{R}$ est la suite définie par

$$\forall n \in \mathbb{N}, \ w_n = \lambda u_n.$$

Remarque 7.9 – Ces opérations confèrent à $\mathbb{R}^{\mathbb{N}}$ une structure d'algèbre commutative unitaire. Cette notion sera précisée plus tard dans l'année.

4 - <u>Suites constantes/stationnaire/monotones</u>

Définition 7.10 – Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

• $(u_n)_{n\in\mathbb{N}}$ est dite **constante** s'il existe $\alpha\in\mathbb{R}$ tel que $\forall n\in\mathbb{N},\ u_n=\alpha$ ou, ce qui est équivalent, si elle vérifie

$$\forall n \in \mathbb{N}, \ u_{n+1} = u_n.$$

• $(u_n)_{n\in\mathbb{N}}$ est dite **stationnaire** lorsqu'elle est constante au delà d'un certain rang, c'est-à-dire si elle vérifie :

$$\exists n_0 \in \mathbb{N}, \ \forall n \geqslant n_0, \ u_{n+1} = u_n.$$

Exemple 7.11 –

La suite $(\lfloor 2/n \rfloor)_{n \in \mathbb{N}^*}$ est une suite stationnaire : elle stationne à 0 à partir du rang 3.

Définition 7.12 – Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelle. On dit que

• $(u_n)_{n\in\mathbb{N}}$ est **croissante** lorsque

$$\forall n \in \mathbb{N}, \quad u_n \leqslant u_{n+1},$$

• $(u_n)_{n\in\mathbb{N}}$ est strictement croissante lorsque

$$\forall n \in \mathbb{N}, \quad u_n < u_{n+1},$$

• $(u_n)_{n\in\mathbb{N}}$ est **décroissante** lorsque

$$\forall n \in \mathbb{N}, \quad u_n \geqslant u_{n+1},$$

• $(u_n)_{n\in\mathbb{N}}$ est **strictement décroissante** lorsque

$$\forall n \in \mathbb{N}, \quad u_n > u_{n+1},$$

La suite $(u_n)_{n\in\mathbb{N}}$ est dite **monotone** (resp. **strictement monotone**) lorsqu'elle est croissante ou décroissante (resp. strictement croissante ou strictement décroissante).

Méthode 7.13 - Montrer qu'une suite est croissante ou décroissante

Pour établir qu'une suite est monotone, on peut :

(a) Étudier le signe de la différence $u_{n+1} - u_n$. En effet, on sait que

$$(u_n)_{n\in\mathbb{N}}$$
 est croissante $\iff \forall n\in\mathbb{N}, u_{n+1}-u_n\geqslant 0$,

$$(u_n)_{n\in\mathbb{N}}$$
 est décroissante \iff $\forall n\in\mathbb{N}$, $u_{n+1}-u_n\leqslant 0$.

(b) Comparer le quotient $\frac{u_{n+1}}{u_n}$ et 1 lorsque tous les termes sont strictement positifs. En effet, on sait que

$$(u_n)_{n\in\mathbb{N}}$$
 est croissante $\iff \forall n\in\mathbb{N}, \frac{u_{n+1}}{u_n} \geqslant 1$

$$(u_n)_{n\in\mathbb{N}}$$
 est croissante \iff $\forall n\in\mathbb{N}, \quad \frac{u_{n+1}}{u_n}\geqslant 1,$ $(u_n)_{n\in\mathbb{N}}$ est décroissante \iff $\forall n\in\mathbb{N}, \quad \frac{u_{n+1}}{u_n}\leqslant 1.$

Exemple 7.14 –

(a) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=1$ et pour tout entier $n\geqslant 0$, $u_{n+1}=u_n^2+u_n+1$ est strictement

Je calcule la différence entre deux termes consécutifs : $u_{n+1} - u_n = u_n^2 + u_n + 1 - u_n = u_n^2 + 1$. Or $u_n^2 \ge 0$ car c'est un carré donc $u_{n+1} - u_n \ge 1 > 0$ et la suite $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.

(b) Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ définie pour tout $n\in\mathbb{N}^*$ par $u_n=\frac{2^n}{n+1}$ est strictement croissante. La suite $(u_n)_{n\in\mathbb{N}^*}$ a tous ses termes strictement positifs et pour tout entier $n\geqslant 1$,

$$\frac{u_{n+1}}{u_n} = \frac{2^{n+1}}{n+2} \times \frac{n+1}{2^n} = \frac{2 \times (n+1)}{n+2} = \frac{2n+2}{n+2} = 1 + \frac{n}{n+2} > 1.$$

Ainsi la suite $(u_n)_{n\in\mathbb{N}^*}$ est strictement croissante.

5 – Suite majorée/minorée/bornée

Définition 7.15 – Soient $(u_n)_{n\in\mathbb{N}}$ une suite réelle et m et M deux réels. On dit que

• $(u_n)_{n\in\mathbb{N}}$ est **majorée** par M lorsque

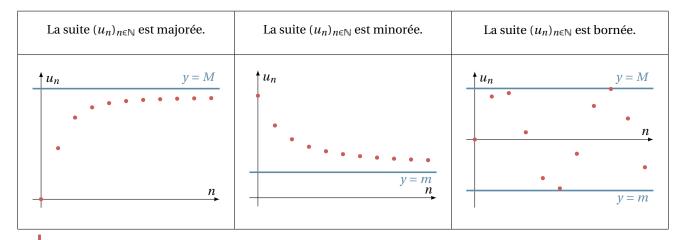
• $(u_n)_{n\in\mathbb{N}}$ est **minorée** par m lorsque

$$\forall n \in \mathbb{N}, \quad u_n \leqslant M.$$

$$\forall n \in \mathbb{N}, \quad u_n \geqslant m.$$

Enfin la suite $(u_n)_{n\in\mathbb{N}}$ est dite **bornée** lorsqu'elle est à la fois majorée **et** minorée, c'est-à-dire si elle vérifie l'une des deux conditions équivalentes suivantes :

- i) $\exists m \in \mathbb{R}, \ \exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ m \leq u_n \leq M$.
- ii) $\exists M \in \mathbb{R}, \ \forall n \in \mathbb{N}, \ |u_n| \leq M.$



D_O

Méthode 7.16 – Montrer qu'une suite est majorée/minorée/bornée

Pour montrer qu'une suite est majorée, on opère de la même façon que pour une fonction : on étudie le signe de $u_n - M$ pour tout n et on montre que $u_n - M \le 0$.

De la même manière, on étudie le signe de $u_n - m$ pour tout n et on montre que $u_n - m \ge 0$ pour prouver que la suite $(u_n)_{n \in \mathbb{N}}$ est minorée par m.

Exemple 7.17 – Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ définie pour tout $n\in\mathbb{N}$ par $u_n=\frac{3n^2}{n^2+1}$ est majorée par 3.

Pour tout $n \in \mathbb{N}$,

$$u_n - 3 = \frac{3n^2}{n^2 + 1} - 3 = \frac{3n^2 - 3(n^2 + 1)}{n^2 + 1} = \frac{-3}{n^2 + 1}.$$

Or -3 < 0 et $n^2 + 1 > 0$ donc $\frac{-3}{n^2 + 1} < 0$. Autrement dit, $u_n - 3 < 0$ *i.e.* $u_n < 3$.

Donc la suite $(u_n)_{n\in\mathbb{N}}$ est bien majorée par 3.

II - Suites remarquables

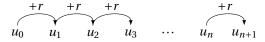
Dans la suite, on s'intéresse à des suites réelles **ou** complexes. Il faut bien avoir en tête que les notions de suite monotone, ou de suite majorée/minorée n'ont pas de sens pour une suite de nombres complexes (puisqu'il n'y a pas de relation d'ordre sur \mathbb{C}). On peut simplement donner un sens à la notion de suite complexe bornée en remplaçant la valeur absolue par un module dans le dernier point de la définition 7.15.

1 - Suites arithmétiques

Définition 7.18 – Soit $(u_n)_{n\in\mathbb{N}}$ une suite. On dit que $(u_n)_{n\in\mathbb{N}}$ est **arithmétique** s'il existe un réel ou un complexe r appelé **raison** tel que

$$\forall n \in \mathbb{N}, \quad u_{n+1} = u_n + r.$$

On passe d'un terme au suivant en ajoutant toujours le même nombre r.



Remarque 7.19 – Pour montrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ est arithmétique, il suffit de montrer que la différence entre deux termes consécutifs $u_{n+1} - u_n$ est une constante qui ne dépend pas de n (il s'agit de la raison r).

Exemple 7.20 – Déterminer si les suites $(u_n)_{n\in\mathbb{N}}$ suivantes sont arithmétiques.

• Pour tout $n \in \mathbb{N}$, $u_n = 2n + 1$. Soit $n \in \mathbb{N}$. Je calcule la différence entre deux termes consécutifs :

$$u_{n+1} - u_n = (2(n+1)+1) - (2n+1) = 2n+2+1-2n-1 = 2.$$

Donc $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison 2.

• Pour tout $n \in \mathbb{N}$, $u_n = n^2 + 1$.

Soit $n \in \mathbb{N}$. Je calcule la différence entre deux termes consécutifs :

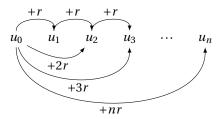
$$u_{n+1} - u_n = ((n+1)^2 + 1) - (n^2 + 1) = n^2 + 2n + 1 + 1 - n^2 - 1 = 2n + 1.$$

Donc $(u_n)_{n\in\mathbb{N}}$ n'est pas une suite arithmétique.

Proposition 7.21 – Expression explicite

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique de raison $r\in\mathbb{R}$. Alors pour tout $n\in\mathbb{N}$,

$$u_n = u_0 + nr$$
.



Démonstration. La démonstration est très facile par récurrence. La propriété est évidemment vraie pour n = 0. Supposons que pour un certain $n \in \mathbb{N}$, on a $u_n = u_0 + nr$. Alors,

$$u_{n+1} = u_n + r = u_0 + nr + r = u_0 + (n+1)r$$

Par récurrence, on a bien $u_n = u_0 + nr$ pour tout $n \in \mathbb{N}$.

Remarque 7.22 – Pour des suites dont l'indice débute à n = 1, l'expression devient

$$\forall n \geqslant 1$$
, $u_n = u_1 + (n-1)r$,

et plus généralement,

$$\forall p \geq 0$$
, $\forall n \geq p$, $u_n = u_p + (n-p)r$.

Proposition 7.23

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmétique **réelle** de raison r.

- Si r > 0 alors la suite $(u_n)_{n \in \mathbb{N}}$ est strictement croissante.
- Si r < 0 alors la suite $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante.
- Si r = 0 alors la suite $(u_n)_{n \in \mathbb{N}}$ est constante.

Démonstration. Cela découle immédiatement du fait que : $\forall n \in \mathbb{N}$ $u_{n+1} - u_n = r$.

Si r > 0, alors la suite $(u_n)_{n \in \mathbb{N}}$ est croissante. Si r < 0, alors la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante. u_n 8 7 6 -25 -3 4 3 -52 -61 2 3 4 5

2 - Suites géométriques

Définition 7.24 – Soit $(u_n)_{n\in\mathbb{N}}$ une suite. On dit que $(u_n)_{n\in\mathbb{N}}$ est **géométrique** s'il existe un réel q aussi appelé **raison** tel que

$$\forall n \in \mathbb{N}, \quad u_{n+1} = q \times u_n.$$

On passe d'un terme au suivant en multipliant toujours par le même nombre q.

Remarque 7.25 – Pour montrer qu'une suite $(u_n)_{n\in\mathbb{N}}$ est géométrique, il suffit de montrer que le quotient entre deux termes consécutifs $\frac{u_{n+1}}{u_n}$ (sous réserve que $u_n \neq 0$) est une constante qui ne dépend pas de n (il s'agit de la raison q).

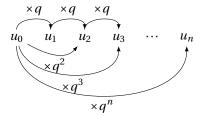
Exemple 7.26 – La suite $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2$ et $u_{n+1}=2u_n-3$ pour $n\geqslant 0$ est-elle géométrique?

Je calcule les premiers termes $u_0 = 2$, $u_1 = 2u_0 - 3 = 1$ et $u_2 = 2u_1 - 3 = -1$ pour comparer les premiers quotients de deux termes consécutifs. Or $\frac{u_1}{u_0} = \frac{1}{2}$ Et $\frac{u_2}{u_1} = -1 \neq \frac{1}{2}$. Donc $(u_n)_{n \in \mathbb{N}}$ n'est pas une suite géométrique.

Proposition 7.27 – Expression explicite

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q. Alors pour tout $n\in\mathbb{N}$,

$$u_n = u_0 \times q^n$$
.



Démonstration. La démonstration est très facile par récurrence. La propriété est évidemment vraie pour n = 0. Supposons que pour un certain $n \in \mathbb{N}$, on a $u_n = u_0 \cdot q^n$. Alors,

$$u_{n+1} = u_n \cdot q = u_0 \cdot q^n \cdot q = u_0 \cdot q^{n+1}$$

Par récurrence, on a bien $u_n = u_0 \cdot q^n$ pour tout $n \in \mathbb{N}$.

Remarque 7.28 – Pour des suites dont l'indice débute à n = 1, l'expression devient

$$\forall n \geqslant 1$$
, $u_n = u_1 \times q^{n-1}$,

et plus généralement,

$$\forall p \geqslant 0$$
, $\forall n \geqslant p$, $u_n = u_n \times q^{n-p}$.

Proposition 7.29

Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique **réelle** de raison $q\in\mathbb{R}$ et de premier terme $u_0\in\mathbb{R}$. Alors :

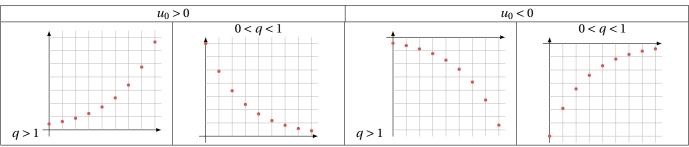
- Si 0 < q < 1 et $u_0 > 0$, la suite (u_n) est strictement décroissante. (c'est le contraire si $u_0 < 0$)
- Si q>1 et $u_0>0$, la suite est strictement croissante. (c'est le contraire si $u_0<0$)
- Si q < 0, la suite n'est pas monotone.

Démonstration. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q et de premier terme u_0 , on a :

$$u_{n+1} - u_n = u_0 \times q^{n+1} - u_0 \times q^n$$
$$= u_0 \times q^n \times (q-1)$$

La monotonie de la suite dépend du signe de u_0 , q^n et (q-1).

- Si q < 0 alors q^n est positif pour n pair, négatif pour n impair donc la suite n'est pas monotone.
- Si q > 0 alors la suite est monotone, croissante ou décroissante selon le signe du produit $u_0 \times (q-1)$.



3 - Suites arithmético-géométriques

Définition 7.30 – Une suite $(u_n)_{n \in \mathbb{N}}$ est dite **arithmético-géométrique** s'il existe deux réels ou complexes a et b tels que

$$\forall n \in \mathbb{N}, \quad u_{n+1} = au_n + b.$$

Remarque 7.31 –

- Si a=1, alors on obtient $\forall n \in \mathbb{N}$, $u_{n+1}=u_n+b$. Autrement dit, $(u_n)_{n\in\mathbb{N}}$ est une suite arithmétique de raison b.
- Si b=0, alors on obtient $\forall n \in \mathbb{N}$, $u_{n+1}=au_n$. Autrement dit, $(u_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison a.

Méthode 7.32 - Trouver la formule explicite d'une suite arithmético-géométrique

Soit $(u_n)_{n\in\mathbb{N}}$ une suite arithmético-géométrique de la forme $u_{n+1}=au_n+b$. Pour exprimer u_n en fonction de n, on procède selon les étapes suivantes :

- 1. On cherche le point fixe, c'est-à-dire l'unique scalaire α tel que $\alpha = a\alpha + b$.
- 2. On introduit une suite auxiliaire $(v_n)_{n\in\mathbb{N}}$, définie par $v_n=u_n-\alpha$ pour tout $n\in\mathbb{N}$, et on montre que la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison a.
- 3. On exprime pour tout entier $n \in \mathbb{N}$, le terme v_n en fonction de n puis on en déduit le terme u_n en fonction de n.

Exemple 7.33 – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=2$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=3u_n-8$. Exprimer u_n en fonction de n pour tout $n\in\mathbb{N}$.

1. On commence par chercher le point fixe. Soit $\alpha \in \mathbb{R}$:

$$\alpha = 3\alpha - 8 \iff -2\alpha = -8 \iff \alpha = \frac{-8}{-2} = 4.$$

2. On pose, pour tout $n \in \mathbb{N}$, le terme $v_n = u_n - 4$. Montrons que $(v_n)_{n \in \mathbb{N}}$ est une suite géométrique de raison 3 :

$$\forall n \in \mathbb{N}, \quad v_{n+1} = u_{n+1} - 4 = (3u_n - 8) - 4 = 3(v_n + 4) - 8 - 4 = 3v_n + 12 - 12 = 3v_n.$$

Donc $(v_n)_{n\in\mathbb{N}}$ est bien une suite géométrique de raison 3.

3. Le premier terme de la suite $(v_n)_{n\in\mathbb{N}}$ est $v_0=u_0-4=2-4=-2$. Puisque la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison 3, alors,

$$\forall n \in \mathbb{N}, \quad \nu_n = \nu_0 \times q^n = -2 \times 3^n.$$

Dès lors,

$$\forall n \in \mathbb{N}, \quad u_n = v_n + 4 = -2 \times 3^n + 4.$$

4 - Suites récurrentes linéaires d'ordre 2

Définition 7.34 – Une suite $(u_n)_{n \in \mathbb{N}}$ est une **suite récurrente linéaire d'ordre** 2 s'il existe a, b et c trois réels ou complexes, avec a et c non nuls, tels que :

$$\forall n \in \mathbb{N}$$
 $u_{n+2} = au_{n+1} + bu_n$.

Remarque 7.35 – Pour définir parfaitement une suite récurrente linéaire d'ordre 2, on complète la formule de récurrence par la donnée des deux premiers termes de la suite.

Exemple 7.36 – Soit $(u_n)_{n \in \mathbb{N}}$ la suite définie par :

$$u_0 = 4$$
, $u_1 = -6$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 2u_{n+1} + \frac{5}{6}u_n$

La suite $(u_n)_{n\in\mathbb{N}}$ est une suite récurrente linéaire d'ordre 2. On cherche à obtenir l'expression de u_n en fonction de n.

Définition 7.37 − Soit $(u_n)_{n \in \mathbb{N}}$ une suite récurrente linéaire d'ordre 2. On appelle **équation caractéristique** associée à la suite récurrente linéaire d'ordre 2 l'équation du second degré $ar^2 + br + c = 0$.

Exemple 7.38 – L'équation caractéristique associée à la suite précédente est $r^2 - 2r - \frac{5}{6} = 0$.

Proposition 7.39 – Expression dans le cas complexe

Pour déterminer l'expression du terme général u_n d'une telle suite, on commence par considérer son équation caractéristique (E): $ar^2 + br + c = 0$ et le discriminant Δ de cette équation.

ightharpoonup Si $\Delta \neq 0$, alors (E) a deux solutions complexes distinctes z_1 et z_2 et il existe deux constantes α et β complexes telles que

$$\forall n \in \mathbb{N}, u_n = \alpha z_1^n + \beta z_2^n.$$

ightharpoonup Si $\Delta = 0$, alors (*E*) admet une unique solution z_0 et il existe deux constantes α et β complexes telles que

$$\forall n \in \mathbb{N}, \ u_n = (\alpha n + \beta) z_0^n.$$

Dans chacun des cas, les valeurs de α et β sont entièrement déterminées par les valeurs de u_0 et u_1 .

Démonstration. Petite remarque préliminaire. Une suite $(\delta_n)_{n\in\mathbb{N}}$ étant donnée, si d'une part $\delta_0=\delta_1=0$ et si d'autre part $a\delta_{n+2}+b\delta_{n+1}+c\delta_n=0$ pour tout $n\in\mathbb{N}$, alors $\delta_n=0$ pour tout $n\in\mathbb{N}$.

▶ **Cas où** $\Delta \neq 0$. Alors, (*E*) possède deux racines distinctes z_1 et z_2 dans \mathbb{C} . Soient α et β deux éléments de \mathbb{C} que nous allons choisir explicitement dans un instant. Pour tout $n \in \mathbb{N}$, posons $\delta_n = u_n - \alpha z_1^n - \beta z_2^n$. Pour tout $n \in \mathbb{N}$:

$$a\delta_{n+2} + b\delta_{n+1} + c\delta_n = (au_{n+2} + bu_{n+1} + cu_n) - \alpha \left(az_1^{n+2} + bz_1^{n+1} + cz_1^n\right) - \beta \left(az_2^{n+2} + bz_2^{n+1} + cz_2^n\right)$$
$$= 0 - \alpha z_1^n \left(az_1^2 + bz_1 + c\right) - \beta z_2^n \left(az_2^2 + bz_2 + c\right) = 0$$

Peut-on choisir α et β de façon à garantir que $\delta_0 = \delta_1 = 0$? Eh bien oui car $z_1 \neq z_2$, il suffit de poser $\alpha = \frac{z_2 u_0 - u_1}{z_2 - z_1}$ et $\beta = \frac{u_1 - z_1 u_0}{z_2 - z_1}$. Ainsi $\delta_n = 0$ pour tout $n \in \mathbb{N}$, donc $u_n = \alpha z_1^n + \beta z_2^n$.

Cas où $\delta = 0$. Alors, (*E*) possède une unique racine z_0 dans ℂ: Bien sûr $z_0 = -\frac{b}{2a}$, et comme $\Delta = 0$ avec $a \neq 0$ et $c \neq 0$: $b \neq 0$, donc $z_0 \neq 0$. Soient α et β deux éléments de ℂ que nous allons choisir explicitement dans un instant. Pour tout $n \in \mathbb{N}$, posons $\delta_n = u_n - (\alpha n + \beta)z_0^n$. Pour tout $n \in \mathbb{N}$:

$$a\delta_{n+2} + b\delta_{n+1} + c\delta_n = (au_{n+2} + bu_{n+1} + cu_n) - \alpha \left(a(n+2)z_0^{n+2} + b(n+1)z_0^{n+1} + cnz_0^n \right) - \beta \left(az_0^{n+2} + bz_0^{n+1} + cc_0^n \right)$$
$$= 0 - \alpha \left(nz_0^n \left(az_0^2 + bz_0 + c \right) + z_0^{n+1} (2az_0 + b) \right) - \beta z_0^n \left(az_0^2 + bz_0 + c \right) = 0$$

Peut-on choisir α et β de façon à garantir que $\delta_0 = \delta_1 = 0$? Eh bien oui car $z_0 \neq 0$, il suffit de poser $\alpha = \frac{u_1 - z_0 u_0}{z_0}$ et $\beta = u_0$. Ainsi $\delta_n = 0$ pour tout $n \in \mathbb{N}$, donc $u_n = (\alpha n + \beta) z_0^n$.

8

Proposition 7.40 – Expression dans le cas réel

Pour déterminer l'expression du terme général u_n d'une telle suite lorsque u_0 , u_1 , a, b et c sont réels, on considère son équation caractéristique (E): $ar^2 + br + c = 0$ et le discriminant Δ de cette équation.

 \triangleright Si $\Delta > 0$, alors (E) a deux solutions x_1 et x_2 et il existe deux constantes α et β réelles telles que

$$\forall n \in \mathbb{N}, \ u_n = \alpha x_1^n + \beta x_2^n.$$

ightharpoonup Si $\Delta = 0$, alors (E) a une unique solution x_0 et il existe deux constantes α et β réelles telles que

$$\forall n \in \mathbb{N}, \ u_n = (\alpha n + \beta) x_0^n.$$

⊳ Si Δ < 0, alors (E) admet deux solutions complexes conjuguées ρ e^{$i\theta$} et ρ e^{$-i\theta$} où ρ ∈ \mathbb{R}_+^* et θ ∈ \mathbb{R} , et il existe deux constantes α et β réelles telles que

$$\forall n \in \mathbb{N}, \ u_n = \rho^n(\alpha \cos(n\theta) + \beta \sin(n\theta)).$$

Dans chacun des cas, les valeurs de α et β sont entièrement déterminées par les valeurs de u_0 et u_1 .

Démonstration.

 \triangleright Si $\Delta > 0$, on sait d'après le cas complexe qu'il existe deux constantes α et β , a priori complexes, telles que

$$\forall n \in \mathbb{N}, \ u_n = \alpha x_1^n + \beta x_2^n.$$

Or, on a vu que $\alpha = \frac{u_1 - x_2 u_0}{x_1 - x_2}$ et $\beta = \frac{u_1 - x_1 u_0}{x_2 - x_1}$. Puisque u_0 , u_1 , u_2 et u_2 sont réels, les deux nombres u_2 et u_2 sont, eux aussi, réels.

- ightharpoonup On procède de la même manière si $\Delta = 0$.
- Supposons que Δ < 0. D'après le cas complexe, en notant $r = \rho e^{i\theta}$ et $\overline{r} = \rho e^{-i\theta}$ les deux solutions complexes conjuguées de (E), où $\rho \in \mathbb{R}_+^*$ et $\theta \in \mathbb{R}$, on sait qu'il existe deux constantes complexes A et B telles que

$$\forall n \in \mathbb{N}, \ u_n = Ar^n + B\overline{r}^n = A\rho^n e^{in\theta} + B\rho^n e^{-in\theta}.$$

On a vu que
$$A = \frac{u_1 - \overline{r}u_0}{r - \overline{r}}$$
 et que $B = \frac{u_1 - ru_0}{\overline{r} - r} = \overline{A}$.

Ainsi, on a pour tout $n \in \mathbb{N}$,

$$u_n = \rho^n (Ae^{in\theta} + \overline{A}e^{-in\theta})$$

$$= \rho^n (Ae^{in\theta} + \overline{A}e^{in\theta})$$

$$= \rho^n 2 \operatorname{Re}(Ae^{in\theta})$$

$$= \rho^n (2\operatorname{Re}(A)\cos(n\theta) - 2\operatorname{Im}(A)\sin(n\theta))$$

$$= \rho^n (\alpha\cos(n\theta) + \beta\sin(n\theta))$$

où l'on a posé $\alpha = 2\text{Re}(A)$ et $\beta = -2\text{Im}(A)$, qui sont bien des réels.

Exemple 7.41 – Déterminer une expression du terme général de la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$\begin{cases} u_0 = 1 & u_1 = 5, \\ \forall n \in \mathbb{N} & u_{n+2} = 2u_{n+1} + 3u_n. \end{cases}$$

Commençons par résoudre l'équation caractéristique (E) associée à cette suite récurrente linéaire d'ordre $2: r^2 = 2r + 3$. Ce qui équivaut à l'équation $r^2 - 2r - 3 = 0$. On a :

$$\Delta = (-2)^2 - 4 \times 1 \times (-3) = 16 > 0 \text{ et } r_1 = \frac{2 + \sqrt{16}}{2} = 3, \quad r_2 = \frac{2 - \sqrt{16}}{2} = -1.$$

Ainsi pour tout n, $u_n = \lambda(-1)^n + \mu 3^n$. Il reste à déterminer λ et μ . On a :

$$u_0 = 1 = \lambda(-1)^0 + \mu 3^0 = \lambda + \mu \text{ et } u_1 = 5 = \lambda(-1)^1 + \mu 3^1 = -\lambda + 3\mu.$$

9

On obtient donc le système suivant :

$$\left\{ \begin{array}{l} \lambda + \mu = 1, \\ -\lambda + 3\mu = 5. \end{array} \right.$$

En additionnant les deux équations, on obtient $4\mu=6$ d'où $\mu=\frac{6}{4}=\frac{3}{2}$. On a alors $\lambda=1-\mu=1-\frac{3}{2}=-\frac{1}{2}$. La suite $(u_n)_{n\in\mathbb{N}}$ a donc pour expression :

$$\forall n \in \mathbb{N}, \qquad u_n = -\frac{1}{2}(-1)^n + \frac{3}{2}3^n = \frac{1}{2}\left((-1)^{n+1} + 3^{n+1}\right).$$

Exemple 7.42 – On cherche une expression explicite de la suite réelle $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=u_1=1$ et pour tout $n\in\mathbb{N}$: $u_{n+2}=u_{n+1}-u_n$.

Les racines du polynôme $X^2 - X + 1$ sont $e^{\frac{i\pi}{3}}$ et $e^{\frac{-i\pi}{3}}$ - complexes conjuguées. Il existe donc deux réels α et β pour lesquels $u_n = \alpha \cos\left(\frac{n\pi}{3}\right) + \beta \sin\left(\frac{n\pi}{3}\right)$ pour tout $n \in \mathbb{N}$. Or comme $u_0 = u_1 = 1$: $\alpha = \frac{\alpha + \beta\sqrt{3}}{2} = 1$, donc $\alpha = 1$ et $\beta = \frac{1}{\sqrt{3}}$, donc pour tout $n \in \mathbb{N}$: $u_n = \cos\left(\frac{n\pi}{3}\right) + \frac{1}{\sqrt{3}}\sin\left(\frac{n\pi}{3}\right)$.