6 Bijections réelles et fonctions circulaires réciproques

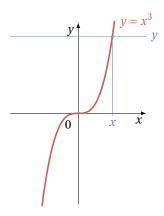
Il est plus facile d'apprendre les mathématiques que d'apprendre à s'en passer.

Henri Cartan (1904-2008), mathématicien.

I – Fonctions réelles bijectives

Définition 6.1 – Soit $f: D \to E$. On dit que f est une **bijection**, ou que f est **bijective**, lorsque : Pour tout $y \in E$, l'équation f(x) = y d'inconnue $x \in D$ admet une unique solution.

Cela revient à dire que chaque élément de E a exactement **un** antécédent par f.



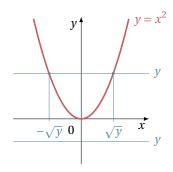
Pour la fonction cube $g: \mathbb{R} \to \mathbb{R}$ dont la courbe

est représentée ci-dessus, tout élément y de $\mathbb R$ admet un unique antécédent x.

Autrement dit, pour toute ordonnée $y \in \mathbb{R}$, il existe une unique abscisse $x \in \mathbb{R}$ telle que $y = x^3$.

En revanche, la restriction de la fonction carré aux seuls réels positifs

La fonction cube est donc une bijection de \mathbb{R} sur \mathbb{R} .



Pour la fonction carrée $f: \frac{1}{x} \mapsto \frac{1}{x^2}$ dont la courbe est représentée ci-dessus, la situation varie selon le signe de y:

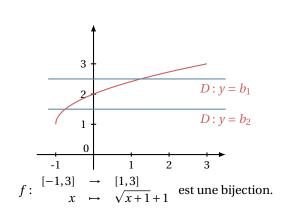
- si y > 0, il y a deux antécédents \sqrt{y} et $-\sqrt{y}$,
- si y < 0, il n'y a aucun antécédent.

Du fait de l'absence d'existence ou d'unicité pour les antécédents de y, la fonction carrée n'est pas une bijection de $\mathbb R$ sur $\mathbb R$.

 $f_+: \begin{array}{ccc} \mathbb{R}_+ & \to & \mathbb{R}_+ \\ x & \mapsto & x^2 \end{array}$ est une bijection de \mathbb{R}_+ sur \mathbb{R}_+ .

Remarque 6.2 -

Graphiquement, $f: D \to E$ est une bijection si, et seulement si, pour tout $b \in E$, la droite horizontale d'équation y = b coupe la courbe représentative de f en un unique point.



Exemple 6.3 – Montrer que la fonction f définie sur \mathbb{R} par f(x) = 3x - 2 est une bijection de \mathbb{R} dans \mathbb{R} .

Tout d'abord, pour tout $x \in \mathbb{R}$, il est clair que $f(x) = 3x - 2 \in \mathbb{R}$. Soit $y \in \mathbb{R}$. On a :

$$f(x) = y \iff 3x - 2 = y \iff 3x = y + 2 \iff x = \frac{y+2}{3}$$
.

Donc pour tout $y \in \mathbb{R}$, il y a bien un unique antécédent $x \in \mathbb{R}$. Ainsi, la fonction f décrit bien une bijection de \mathbb{R} dans \mathbb{R} .

Exemple 6.4 - Les fonctions suivantes sont des bijections :

En revanche,

$$h: \begin{array}{ccc} [0,2\pi] & \longrightarrow & [-1,1] \\ x & \longmapsto & \cos(x) \end{array}, \quad k: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x^2 \end{array}$$

n'en sont pas. En effet, 1 a plusieurs antécédents par h (0 et 2π) et -1 n'a pas d'antécédent par k.

Définition 6.5 – Soit $f: D \to E$ une bijection. On appelle **bijection réciproque** de f la fonction notée f^{-1} définie sur Eet à valeurs dans D qui à tout $y \in E$ associe l'unique solution de l'équation f(x) = y.

Exemple 6.6 – La bijection réciproque de ln est \ln^{-1} : $\begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}_{+}^{*} \\ v & \mapsto & e^{y} \end{array}$.

ATTENTION! f^{-1} ne correspond généralement pas à $\frac{1}{f}$. Il ne faut pas confondre les deux notations.

Exemple 6.7 - Parmi les fonctions suivantes, indiquer lesquelles sont des bijections. Quand elles en sont, déterminer leur bijection réciproque.

$$f \colon \stackrel{\mathbb{R}}{\underset{x}{\longmapsto}} \stackrel{\longrightarrow}{\underset{x^2}{\longrightarrow}} \mathbb{R}_+$$
, $h \colon \stackrel{\mathbb{R}}{\underset{x}{\longmapsto}} \stackrel{\longrightarrow}{\underset{-4x+7}{\longrightarrow}} \mathbb{R}$, $j \colon \stackrel{[-1,+\infty[}{\underset{x}{\longmapsto}} \stackrel{\longrightarrow}{\underset{-3}{\longrightarrow}} \frac{]0,1]}{\underset{x}{\longmapsto}}$

- f n'est pas une bijection. En effet, 1 a plusieurs antécédents dans \mathbb{R} , 1 et -1.
- Pour tout $x, y \in \mathbb{R}$, on a

$$h(x) = y \iff -4x + 7 = y \iff x = \frac{7 - y}{4}.$$

Ainsi, h(x) = y a une unique solution dans \mathbb{R} quelque soit y dans \mathbb{R} , donc h est bijective. De plus, sa réciproque est la fonction h^{-1} : $\begin{matrix} \mathbb{R} & \longrightarrow & \mathbb{R} \\ y & \longmapsto & \overline{7-y} \end{matrix}$.

• Pour tout $x \ge -1$ et $y \in]0, 1]$, on a

$$j(x) = y \iff \frac{2}{x+3} = y \iff 2 = y(x+3) \iff x = \frac{2}{y} - 3.$$

De plus, puisque $y \in]0,1]$, alors $\frac{2}{y} \geqslant 2$, donc $\frac{2}{y} - 3 \geqslant -1$. On en déduit que j(x) = y a une unique solution dans $[-1, +\infty[$ quel que soit $y \in]0,1]$, donc j est bijective et sa réci-

proque est la fonction j^{-1} : $y \longmapsto \frac{2}{y} -3$.

Proposition 6.8

Soit $f: D \rightarrow E$ une bijection.

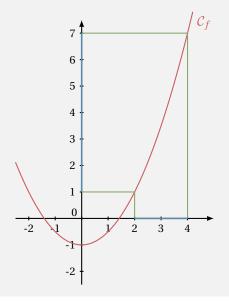
1.
$$\forall x \in D, f^{-1}(f(x)) = x.$$

2.
$$\forall y \in E, f(f^{-1}(y)) = y.$$

Bien évidemment, toutes les fonctions ne sont pas bijectives. Il est par contre fréquent que la restriction d'une fonction $f: D \to \mathbb{R}$ à un sous-ensemble $A \subset D$ de l'ensemble de définition soit une bijection de A sur son image f(A).

Exemple 6.9 -

La fonction $f: x \mapsto \frac{1}{2}x^2 - 1$ n'est pas une bijection de \mathbb{R} dans \mathbb{R} puisque 2 et -2 ont la même image par f (à savoir 1). Cependant, f est une bijection de [2;4] dans [1;7] (par exemple).



Pour montrer qu'une fonction réalise une bijection entre deux intervalles, il peut être difficile (voire impossible) de résoudre l'équation f(x) = y comme nous l'avons fait dans les cas simples de l'exemple 6.7. Heureusement, nous disposons d'un résultat « boite noire », qui traduit l'intuition graphique. Il sera démontré plus tard.

Théorème 6.10 - Théorème de la bijection

Soit $f: D \to \mathbb{R}$. Soit un **intervalle** $I \subset D$. **Si**

- 1. *f* est continue sur *I*,
- 2. *f* est strictement monotone sur *I*,

alors, f réalise une bijection de I sur un intervalle noté f(I) dont les bornes sont les limites de f aux bornes de I.

Précisément, lorsque l'on est dans le cas de cette proposition, les possibilités pour l'intervalle f(I) sont résumées ici :

	f(I)	
I	f est strictement croissante	f est strictement décroissante
[<i>a</i> ; <i>b</i>]	[f(a); f(b)]	[f(b); f(a)]
[a; b[$\left[f(a); \lim_{x \to b^{-}} f(x) \right]$	$\left \lim_{x \to b^{-}} f(x); f(a) \right $
] <i>a</i> ; <i>b</i>]	$\left[\lim_{x\to a^+} f(x); f(b)\right]$	$\left[f(b); \lim_{x \to a^+} f(x)\right]$
]a; b[$\lim_{x \to a^+} f(x); \lim_{x \to b^-} f(x)$	$\lim_{x \to b^{-}} f(x); \lim_{x \to a^{+}} f(x)$

Dans ce tableau, a et b sont des réels ou $-\infty$ ou $+\infty$.

Exemple 6.11 -

1. Reprenons la fonction f de l'exemple 6.9.

f est continue et strictement décroissante sur] $-\infty$, 0] donc elle réalise une bijection de] $-\infty$, 0[sur

$$f(]-\infty,0]) = [f(0), \lim_{x \to -\infty} f(x)] = [-1, +\infty[.$$

f est continue et strictement croissante sur $[0, +\infty[$ donc elle réalise une bijection de $[0, +\infty[$ sur

$$f([0, +\infty[) = [f(0), \lim_{x \to +\infty} f(x)] = [-1, +\infty[.$$

2. Exponentielle est strictement croissante sur \mathbb{R} donc réalise une bijection de \mathbb{R} sur $\exp(\mathbb{R}) =]0, +\infty[$.

Proposition 6.12

Soit f une fonction continue strictement monotone définie sur un intervalle I.

- La fonction réciproque f^{-1} , définie sur f(I), est aussi continue, strictement monotone et de même sens de variation que f.
- Sa courbe $\mathcal{C}_{f^{-1}}$ est obtenue par symétrie par rapport à la droite d'équation y=x.

Démonstration. On démontre uniquement le résultat de symétrie des courbes de C_f et $C_{f^{-1}}$.

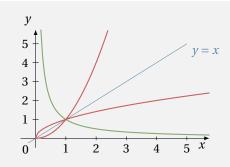
On va raisonner par double inclusion.

Soit \mathcal{C} la courbe représentative de f et \mathcal{C}' la courbe représentative de f^{-1} . On note s la symétrie orthogonale du plan d'axe la droite d'équation y = x. s est donc l'application qui à un point de coordonnées (x, y) associe le point de coordonnées (y, x). Soit $M \in \mathcal{C}$. Alors M a pour coordonnées (x, f(x)) pour un certain $x \in D$. s(M) a donc pour coordonnées (f(x), x), c'est à dire $(y, f^{-1}(y))$ en notant y = f(x). Donc $s(M) \in \mathcal{C}'$. D'où $s(\mathcal{C}) \subset \mathcal{C}'$.

En appliquant ce raisonnement à partir de \mathcal{C}' au lieu de \mathcal{C} , on obtient $\mathcal{C}' \subset s(\mathcal{C})$. Par double inclusion, $\mathcal{C}' = s(\mathcal{C})$

Exemple 6.13 - Deux exemples:

- Les fonctions carrée et racine carrée, réciproques l'une de l'autre sur $]0,+\infty[$, ont des courbes symétriques par rapport à la droite d'équation y=x.
- La courbe de la fonction inverse sur l'intervalle $]0,+\infty[$ est symétrique par rapport à la droite d'équation y=x: la fonction inverse décrit une bijection et est sa propre bijection réciproque.



Remarque 6.14 – Le résultat sur la continuité de f^{-1} sera démontré plus tard dans le chapitre sur la continuité. Toutefois, on peut se convaincre de sa véracité graphiquement : si la courbe représentative de f peut se tracer localement sans lever le crayon, alors il en va de même pour la courbe de f^{-1} puisqu'elles sont symétriques.

Proposition 6.15 – Dérivée de la réciproque d'une bijection continue

Soit f une bijection **continue** strictement monotone d'un intervalle I sur l'intervalle f(I).

1. Si f est dérivable sur I et f' ne s'annule pas sur I, alors f^{-1} est dérivable sur f(I),

$$\forall y\in f(I), \qquad \big(f^{-1}\big)'(y)=\frac{1}{f'\big(f^{-1}(y)\big)}.$$

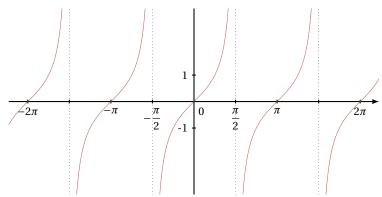
2. Si f est dérivable en un point a et si f'(a) = 0, alors f^{-1} n'est pas dérivable en b = f(a), mais sa courbe représentative présente une tangente verticale au point de coordonnées $(b, f^{-1}(b))$.

Remarque 6.16 - Nous démontrerons cette proposition dans le chapitre sur la dérivabilité.

On peut à nouveau considérer ce résultat graphiquement : Comme les courbes représentatives de f et de f^{-1} sont symétriques, leurs tangentes sont également symétriques. Cela implique que leurs pentes sont inverses l'une de l'autre si aucune n'est nulle. Cela implique également que la courbe représentative de f^{-1} admet une tangente verticale au symétrique des points où la courbe représentative de f admet une tangente horizontale. On retrouve ainsi que lorsque f' s'annule en a, alors f^{-1} n'est pas dérivable en f(a).

II - Fonctions circulaires réciproques

1 - La fonction arc-tangente



Graphe de la fonction tangente.

La fonction tan: $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\} \longrightarrow \mathbb{R}$ est surjective mais n'est pas injective donc ce n'est pas une bijection. $x \longmapsto \tan(x)$

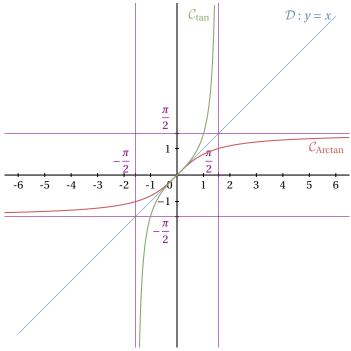
Par exemple, l'équation $\tan(x)=0$ possède une infinité de solutions. Par contre, la fonction tan est continue et strictement croissante sur $\Big]-\frac{\pi}{2},\frac{\pi}{2}\Big[$ donc elle réalise une bijection de $\Big]-\frac{\pi}{2},\frac{\pi}{2}\Big[$ vers $\tan\Big(\Big]-\frac{\pi}{2},\frac{\pi}{2}\Big[\Big)=]-\infty,+\infty[=\mathbb{R}.$

Définition 6.17 – La fonction arc-tangente, notée Arctan, est la bijection réciproque de la bijection

$$\tan: \]-\frac{\pi}{2}, \frac{\pi}{2}[\longrightarrow \mathbb{R}$$

$$x \longmapsto \tan(x)$$

La fonction Arctan : $\mathbb{R} \longrightarrow \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$ est donc une bijection.



Graphe de la fonction Arctan.

Proposition 6.18 - Arctangente et tangente

- 1. Pour tout $y \in \mathbb{R}$, tan(Arctan(y)) = y.
- 2. Pour tout $x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}, \right]$ Arctan(tan(x)) = x.

ATTENTION! Si x est un réel qui n'appartient pas à $]-\frac{\pi}{2}, \frac{\pi}{2}[$, alors Arctan $(\tan(x)) \neq x$.

Exemple 6.19 –

$$Arctan(0) = 0 tan(Arctan(72)) = 72$$

$$Arctan(1) = \frac{\pi}{4} Arctan\left(tan\left(-\frac{\pi}{4}\right)\right) = \frac{-\pi}{4}$$

$$Arctan(-\sqrt{3}) = \frac{-\pi}{3} Arctan\left(tan\left(\frac{4\pi}{73}\right)\right) = \frac{4\pi}{73}$$

$$Arctan\left(\frac{\sqrt{3}}{3}\right) = \frac{\pi}{6} Arctan\left(tan\left(\frac{3\pi}{4}\right)\right) = \frac{-\pi}{4}$$

Visuellement, on s'attend à ce que cette fonction Arctan soit impaire, de limite $\frac{\pi}{2}$ en $+\infty$ et $\frac{-\pi}{2}$ en $-\infty$, continue et dérivable sur \mathbb{R} , de dérivée strictement positive puisqu'elle est strictement croissante. Montrons tout cela.

Proposition 6.20 – Propriétés de Arctan

- 1. Arctan est une fonction impaire.
- 2. Arctan est strictement croissante et continue sur \mathbb{R} .
- 3. $\lim_{y \to -\infty} \operatorname{Arctan}(y) = -\frac{\pi}{2} \operatorname{et} \lim_{y \to +\infty} \operatorname{Arctan}(y) = \frac{\pi}{2}$.
- 4. Arctan est dérivable sur \mathbb{R} et $\forall y \in \mathbb{R}$, Arctan' $(y) = \frac{1}{1+y^2}$

Démonstration.

1. Pour tout $y \in \mathbb{R}$ (\mathbb{R} est bien symétrique par rapport à 0), il existe un unique $x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ tel que $y = \tan(x)$ (et Arctan(y) = x)

$$Arctan(-y) = Arctan(-tan(Arctan(y)))$$

= $Arctan(tan(-Arctan(y)))$ car tan est impaire
= $-Arctan(y)$

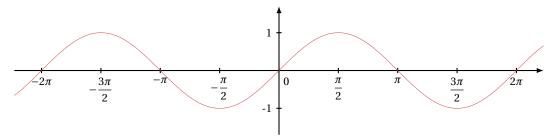
Donc Arctan est impaire.

- 2. La fonction tan : $\begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix} \rightarrow \mathbb{R}$ est une bijection continue sur $\end{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix}$ donc sa bijection réciproque est continue sur \mathbb{R} .
- 3. Puisque $\lim_{x \to -\pi/2} \tan(x) = -\infty$, on a $\lim_{y \to -\infty} \operatorname{Arctan}(y) = -\frac{\pi}{2}$. Par imparité, $\lim_{y \to +\infty} \operatorname{Arctan}(y) = \frac{\pi}{2}$.
- 4. La fonction tan est dérivable sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ et : $\forall x \in]-\frac{\pi}{2},\frac{\pi}{2}[$, $\tan'(x)=1+\tan^2(x)$. La dérivée de tan ne s'annule pas sur $]-\frac{\pi}{2},\frac{\pi}{2}[$ donc Arctan est dérivable sur $\mathbb R$ et pour tout $y \in \mathbb R$,

$$\operatorname{Arctan}'(y) = \frac{1}{\tan'(\operatorname{Arctan}(y))} = \frac{1}{1 + \tan^2(\operatorname{Arctan}(y))} = \frac{1}{1 + y^2}.$$

6

2 - La fonction arc-sinus



Graphe de la fonction sinus.

La fonction sinus n'est ni surjective ni injective donc ce n'est pas une bijection. Par exemple, sin(x) = 0 a une infinité de solution et sin(x) = 2 n'en a pas.

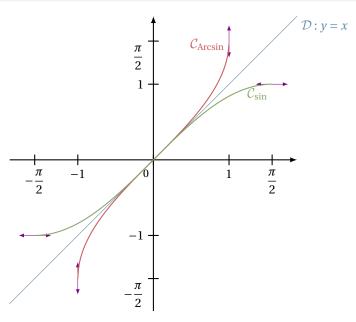
En revanche, la fonction sin est continue et strictement croissante sur $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$. De plus, $\sin\left(-\frac{\pi}{2}\right)=-1$ et $\sin\left(\frac{\pi}{2}\right)=1$ donc elle réalise une bijection de $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ vers $\sin\left(\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\right)=\left[\sin\left(-\frac{\pi}{2}\right),\sin\left(\frac{\pi}{2}\right)\right]=\left[-1,1\right]$.

Définition 6.21 – La fonction arc-sinus, notée Arcsin, est la bijection réciproque de la fonction bijective

$$\sin: \begin{bmatrix} -\frac{\pi}{2}, \frac{\pi}{2} \end{bmatrix} \rightarrow [-1, 1]$$

 $x \mapsto \sin(x)$

Arcsin: $[-1,1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ est donc une bijection.



Graphe de la fonction arc-sinus.

Proposition 6.22 - Arc-sinus et sinus

- 1. Pour tout $y \in [-1, 1]$, sin(Arcsin(y)) = y.
- 2. Pour tout $x \in \left[\left[-\frac{\pi}{2}, \frac{\pi}{2} \right], \right| \operatorname{Arcsin}(\sin(x)) = x.$

ATTENTION! Quel que soit $x \in [-1,1]$, on a $\sin(\operatorname{Arcsin}(x)) = x$. Par contre, Si x est un réel qui n'appartient pas à $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$, alors $\operatorname{Arcsin}(\sin(x)) \neq x$.

Visuellement, on s'attend à ce que cette fonction Arcsin soit impaire, continue sur [-1,1] et dérivable sur]-1,1[, mais pas en 1 et -1, de dérivée strictement positive puisqu'elle est strictement croissante et ne présente pas de tangente horizontale.

Proposition 6.23 – Propriétés de Arcsin

- 1. Arcsin est une fonction impaire.
- 2. Arcsin est strictement croissante et continue sur [-1; 1].
- 3. Arcsin est dérivable sur]-1; 1[et $\forall y \in$]-1; 1[, Arcsin'(y) = $\frac{1}{\sqrt{1-y^2}}$.

Démonstration.

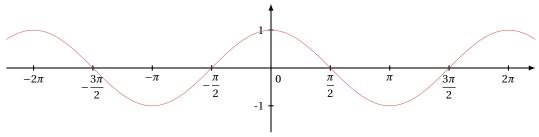
- 1. La preuve d'imparité est similaire à celle d'Arctan.
- 2. La fonction sin est continue et strictement croissante sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, donc sa réciproque l'est également.
- 3. Pour tout $y \in]-1,1[$, sin est dérivable en Arcsin(y) et

$$\sin'(\operatorname{Arcsin}(y)) = \cos(\operatorname{Arcsin}(y)) = \sqrt{1 - \sin(\operatorname{Arcsin}(y))^2} = \sqrt{1 - y^2}.$$

Donc $\sin'(Arcsin(y)) \neq 0$. Par la proposition 6.15, on a donc que Arcsin est dérivable en y et

$$\operatorname{Arcsin}'(y) = \frac{1}{\sin'(\operatorname{Arcsin}(y))} = \frac{1}{\sqrt{1 - y^2}}.$$

3 - La fonction arc-cosinus



Graphe de la fonction cosinus.

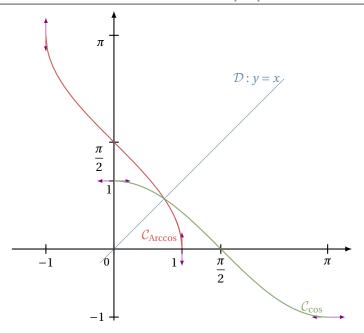
La fonction cosinus n'est ni surjective ni injective donc ce n'est pas une bijection. Par exemple, cos(x) = 0 a une infinité de solution et cos(x) = 2 n'en a pas.

En revanche, la fonction cos est continue et strictement décroissante sur $[0, \pi]$. De plus, $\cos(0) = 1$ et $\cos(\pi) = -1$ donc elle réalise une bijection de $[0, \pi]$ vers $\cos([0, \pi]) = [\cos(\pi), \cos(0)] = [-1, 1]$.

Définition 6.24 – La fonction arc-cosinus, notée Arccos, est la bijection réciproque de la fonction bijective

$$\cos: \begin{array}{ccc} \left[0,\pi\right] & \to & [-1,1] \\ x & \mapsto & \cos(x) \end{array}$$

Arccos: $[-1,1] \rightarrow [0,\pi]$ est donc une bijection.



Graphe de la fonction arc-cosinus.

Proposition 6.25 - Arc-cosinus et cosinus

- 1. Pour tout $y \in [-1,1]$, $\cos(\operatorname{Arccos}(y)) = y$.
- 2. Pour tout $x \in [0, \pi]$, Arccos(cos(x)) = x.

ATTENTION! Quel que soit $x \in [-1, 1]$, on a $\cos(\operatorname{Arccos}(x)) = x$. Par contre, Si x est un réel qui n'appartient pas à $[0, \pi]$, alors $\operatorname{Arccos}(\cos(x)) \neq x$.

Exemple 6.26 – Arccos cos
$$\frac{20\pi}{3} = \frac{2\pi}{3}$$

 $\frac{20\pi}{3}$ appartient à 2π près au domaine privilégié du cosinus : $\frac{20\pi}{3} \in [0,\pi] + 2\pi\mathbb{Z}$. Il suffit donc d'ôter un certain nombre de fois 2π et c'est fini.

Visuellement, on s'attend à ce que cette fonction Arccos soit continue sur [-1,1] et dérivable sur]-1,1[, mais pas en 1 et -1, de dérivée strictement négative puisqu'elle est strictement décroissante et ne présente pas de tangente horizontale.

Proposition 6.27 – Propriétés de Arccos

- 1. Arccos est strictement décroissante et continue sur [-1; 1].
- 2. Arccos est dérivable sur]-1; 1[et $\forall y \in$]-1; 1[, Arccos'(y) = $\frac{-1}{\sqrt{1-y^2}}$.

Démonstration.

- 1. La fonction cos est continue et strictement décroissante sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, donc sa réciproque l'est également.
- 2. Pour tout $y \in]-1,1[$, cos est dérivable en Arccos(y) et

$$\cos'(\operatorname{Arccos}(y)) = -\sin(\operatorname{Arccos}(y)) = -\sqrt{1 - \cos(\operatorname{Arccos}(y))^2} = -\sqrt{1 - y^2}.$$

Donc $\cos'(\operatorname{Arccos}(y)) \neq 0$. Par la proposition 6.15, on a donc que Arccos est dérivable en y et

$$\operatorname{Arccos}'(y) = \frac{1}{\cos'(\operatorname{Arccos}(y))} = \frac{-1}{\sqrt{1 - y^2}}.$$