1 Rudiments de logique et vocabulaire ensembliste

La logique est l'hygiène des mathématiques.

André Weil (1906-1998), mathématicien.

I – Connecteurs logiques et quantificateurs

On appelle proposition (ou assertion) toute phrase *P* au sujet de laquelle on peut poser la question « *P* est-elle vraie? ». La plupart des phrases grammaticalement correctes sont des propositions, mais par exemple « Dis-le-moi! », « Bonjour » ou « Comment vas-tu? » n'en sont pas. La question « Est-il vrai que bonjour? » n'a aucun sens.

```
Exemple 1.1 – «1+1=2» est une proposition vraie. «5 est un nombre pair » est une proposition fausse. «x^2+1» n'est pas une proposition (rien n'est affirmé!).
```

À partir des propositions «J'ai faim » et « J'ai soif », on peut construire une nouvelle proposition « J'ai faim ET (j'ai) soif ». Plus généralement, nous appellerons connecteur logique tout procédé de construction d'une proposition à partir d'une ou de plusieurs autres propositions. Exemples courants : «et», «ou», «si, alors», «parce que »...

1 - Et et Ou

Définition 1.2 – Soient P et Q deux propositions.

P Et Q est une proposition qui est vraie si les deux propositions P et Q sont vraies (et fausse dans les autres cas). P Ou Q est une proposition qui est vraie si l'une au moins des deux propositions P, Q est vraie (et fausse sinon).

ATTENTION! Dans le langage usuel, « ou » oppose parfois les termes qu'il relie. Dans l'expression « fromage ou dessert » des restaurants, « ou » est exclusif car il exclut la possibilité qu'on choisisse les deux - vous pouvez toujours essayer! En mathématiques, « ou » est toujours inclusif, la proposition : P ou Q est vraie même quand P ET Q sont vraies.

Exemple 1.3 -

L'assertion (3, 14 est un nombre réel ou π = 3, 14) est vraie.

L'assertion (3, 14 est un nombre réel et π = 3, 14) est fausse.

2 – La négation

Définition 1.4 – La **négation** d'une proposition *P*, notée non *P*, est une proposition qui est vraie si *P* est fausse, et fausse si *P* est vraie.

Exemple 1.5 –

La négation de « le Mont-Saint-Michel est en Normandie » est « le Mont-Saint-Michel n'est pas en Normandie ».

La négation de $(\pi < 3, 14)$ est $(\pi \ge 3, 14)$.

La négation de $(x \in \mathbb{Z})$ est $(x \notin \mathbb{Z})$.

Soient x et y des nombres réels. La négation de (x = y) est $(x \neq y)$.

La négation de « la suite $(u_n)_{n\in\mathbb{N}}$ est croissante » n'est pas « la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante », car il existe des suites qui ne sont ni croissantes, ni décroissantes.

Proposition 1.6 - Négation des connecteurs Et et Ou

Soient P et Q deux assertions.

La proposition non(P Ou Q) a même valeur logique que la proposition (non P) Et (non Q).

La proposition non(P Et Q) a même valeur logique que l'assertion (non P) Ou (non Q).

Exemple 1.7 -

P Ou Q

« On n'a qu'à prendre un pot de vanille et un pot de chocolat, je suppose que tu aimes l'un des deux parfums? »

« Justement non, je n'aime ni l'un ni l'autre.. »

Négation : (non P) Et (non Q)

Exemple 1.8 –

Trouver la négation des énoncés suivants :

- 1. « J'irai à Nantes ou à Orléans ».
 - « Je n'irai ni à Nantes, ni à Orléans. »
- 2. « Bernard est jeune et riche ».
 - « Bernard est vieux ou pauvre. »

3 - Implications et équivalence

Définition 1.9 (Implication) – La proposition ($P \Longrightarrow Q$) est vraie dès lors que **SI** P est vraie, **ALORS** Q est vraie. On dit alors que P **implique** Q.

Exemple 1.10 – On note *x* un nombre réel. Dire si les implications suivantes sont vraies ou fausses.

- 1. $(x = 3) \Longrightarrow (x^2 = 9)$ Vraie
- 2. $(x^2 = 9) \Longrightarrow (x = 3)$ Fausse
- 3. $(x^2 = 9) \implies (x = 3 \text{ ou } x = -3) \text{ Vraie}$
- 4. $(x > 3) \Longrightarrow (x^2 > 9)$ Vraie
- 5. $(x < -3) \Longrightarrow (x^2 > 9)$ Vraie

ATTENTION! Affirmer que l'implication $P \Longrightarrow Q$ est vraie, n'implique ni que P est vraie, ni que Q est vraie.

Exemple 1.11 – Il est par exemple vrai que « Si Pinocchio est président de la République, alors il est chef des armées », et pourtant Pinocchio n'est pas plus président de la République qu'il n'est chef des armées.

Un petit point de vocabulaire maintenant.

- On dit que Q est une *condition nécessaire* pour que P soit vraie si, lorsque P est vraie, Q l'est aussi nécessairement. Autrement dit si l'implication : $P \Longrightarrow Q$ est vraie.
- On dit que *Q* est une *condition suffisante* pour que *P* s'il suffit que *Q* soit vraie pour que *P* le soit aussi. Autrement dit si l'implication : *Q* ⇒ *P* est vraie.

Exemple 1.12 – Dire à chaque fois quel type de condition est *P* pour *Q*.

- 1. P: « Avoir son bac » et Q: « Etre admis en MPSI ». P est une condition nécessaire pour avoir Q. Ainsi $Q \Longrightarrow P$.
- 2. P: « Avoir un frère » et Q: « Ne pas être enfant unique ». P est une condition suffisante pour avoir Q. Ainsi $P \Longrightarrow Q$.
- 3. *P* : « Avoir le droit de voter pour les élections présidentielles » et *Q* : « Avoir au moins 18 ans ». *P* est une condition nécessaire et suffisante pour avoir *Q*.

Proposition 1.13 – Transitivité de l'implication

Soient P, Q et R trois propositions. Si les implications $P \Longrightarrow Q$ et $Q \Longrightarrow R$ sont vraies, alors l'implication $P \Longrightarrow R$ est vraie.

Définition 1.14 (Réciproque, contraposée) –

- **Réciproque**: On appelle *réciproque* de l'implication: $P \Longrightarrow Q$ la proposition: $Q \Longrightarrow P$.
- **Contraposée :** On appelle *contraposée* de l'implication : $P \Longrightarrow Q$ la proposition : $(\text{non } Q) \Longrightarrow (\text{non } P)$.

ATTENTION! Très souvent, une implication est vraie mais sa réciproque est fausse.

Exemple 1.15 – L'implication $(x \in \mathbb{N}) \Longrightarrow (x \in \mathbb{Z})$ est une assertion vraie pour tout nombre réel x. L'implication réciproque $(x \in \mathbb{Z}) \Longrightarrow (x \in \mathbb{N})$ n'est pas vraie pour tout nombre réel x. Elle est par exemple fausse si x vaut -2.

Proposition 1.16

Toute implication est équivalente à sa contraposée. En d'autres termes, il est équivalent de démontrer l'implication $P \Longrightarrow Q$ et l'implication $(\text{non } Q) \Longrightarrow (\text{non } P)$.

Exemple 1.17 - Il est équivalent de dire « S'il pleut, alors il y a des nuages » et « S'il n'y a pas de nuages, alors il ne pleut pas ». $(\text{non } Q) \Longrightarrow (\text{non } P)$

Exemple 1.18 - Donner les contraposées des implications suivantes :

- 1. $\forall x \in \mathbb{R}, (x \leq 0) \Longrightarrow (\exp(x) \leq 1)$ La contraposée est $\forall x \in \mathbb{R}$, $(\exp(x) > 1) \Longrightarrow (x > 0)$.
- 2. Si deux droites distinctes sont parallèles, alors elles n'ont pas de point d'intersection. La contraposée est : « Si deux droites distinctes ont un point d'intersection alors elles ne sont pas parallèles ».

Remarque 1.19 - La propriété 1.16 nous donne un outil supplémentaire pour démontrer une implication. On peut raisonner par contraposée.

Exemple 1.20 – Soient x et y deux réels distincts de 1.

Montrer que si $x \neq y$, alors $\frac{1}{x-1} \neq \frac{1}{y-1}$

On raisonne par contraposée. Soient *x* et *y* deux réels distincts de 1.

 $\frac{1}{x-1} = \frac{1}{y-1} \text{ alors } x = y. \text{ Supposons que l'on a } \frac{1}{x-1} = \frac{1}{y-1}.$

Alors

 $\frac{1}{x-1} - \frac{1}{y-1} = \frac{1}{y-1}$ D'où.

Ou encore, (x-1)(y-1)

Ainsi,

Définition 1.21 (Équivalence) – Soient P et Q deux propositions. L'équivalence $P \iff Q$ est la proposition $(P \implies$ $Q \to P$.

Exemple 1.22 – Soit $x \in \mathbb{R}$. On a : $(2x + 5 = 9) \iff (x = 2)$.

ATTENTION! Ne pas confondre = !⇔ ne peut s'utiliser qu'entre des propositions!

Remarque 1.23 – Une équivalence, c'est donc deux implications. Il est alors très souvent judicieux de démontrer une équivalence **en raisonnant par double implication** c'est-à-dire en démontrant les deux implications l'une après l'autre. Cela évite beaucoup d'erreurs.

Exemple 1.24 – Soit deux réels *a* et *b*. Montrer que :

$$(\forall n \in \mathbb{N}, \quad a2^n + b3^n = 0) \iff (a = b = 0).$$

Raisonnons par double implication.

 (\Leftarrow) Si a = b = 0 alors pour tout $n \in \mathbb{N}$, on a bien $a2^n + b3^n = 0$.

(⇒) Si pour tout $n \in \mathbb{N}$, on a : $a2^n + b3^n = 0$ alors l'égalité est vraie en particulier pour n = 0 et n = 1 et on obtient le système suivant :

$$\begin{cases} a2^0 + b3^0 = 0 \\ a2^1 + b3^1 = 0 \end{cases}$$

Ce système s'écrit:

$$\begin{cases} a + b = 0 \\ 2a + 3b = 0 \end{cases}$$

et on en déduit

$$\begin{cases} b & = -a \\ 2a & -3a = 0 \end{cases}$$

et donc a = b = 0. Cela prouve la seconde implication.

II – Quantificateurs

Dans cette section, on note P(x) une proposition qui dépend d'une variable x appartenant à un ensemble E.

1 - Quel que soit

Définition 1.25 – Pour écrire que P(x) est vrai pour tout élément x appartenant à E, on peut utiliser le **quantificateur universel** \forall , qui se lit « pour tout » ou « quel que soit », de la façon suivante :

$$\forall x \in E, P(x).$$

On lit : « Quel que soit x appartenant à E, P(x) est vrai. »

Exemple 1.26 – «Le carré de tout nombre réel est positif » se traduit par la formule suivante :

$$\forall x \in \mathbb{R}, \ x^2 \geqslant 0.$$

« La suite $(u_n)_{n\in\mathbb{N}}$ est croissante » signifie « pour tout entier naturel $n, u_{n+1} \geqslant u_n$ » et se traduit par la formule :

$$\forall n \in \mathbb{N}, u_{n+1} \geqslant u_n.$$

Méthode 1.27 –

Pour démontrer qu'une proposition du type $(\forall x \in E, P(x))$ est vraie, on doit montrer qu'elle est vraie peu importe l'élément x choisi dans E. On choisit un élément x quelconque de l'ensemble E, et on démontre qu'il vérifie P(x).

On commence systématiquement la rédaction par : « Soit $x \in E$. »

Exemple 1.28 – Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x - e^{-x}}{2}$. Montrer que pour tout $x \in \mathbb{R}$, f(-x) = -f(x).

Soit $x \in \mathbb{R}$. On a

$$f(-x) = \frac{e^{-x} - e^x}{2}$$
$$= -\frac{e^{-x} + e^x}{2}$$
$$= -\frac{e^x - e^{-x}}{2}$$
$$= -f(x)$$

On a donc montré que $\forall x \in \mathbb{R}$, f(-x) = -f(x).

ATTENTION! On ne peut pas prouver « $\forall x \in E$, P(x) » en choisissant une valeur de x pour laquelle P(x)

Autrement dit, on ne peut pas prouver une généralité avec un exemple.

Cas particulier des entiers naturels : Pour démontrer un énoncé du type « $\forall n \in \mathbb{N}$, P(n) », il est souvent (pas tout le temps!) judicieux d'essayer de le démontrer par récurrence.

2 – Il existe

Définition 1.29 – Pour écrire que P(x) est vrai pour au moins un élément x de E, on peut utiliser le **quantificateur** existentiel \exists , qui se lit « il existe », de la façon suivante :

$$\exists x \in E, P(x),$$

On lit : « il existe un élément x dans E tel que A(x) est vrai ».

Exemple 1.30 - L'énoncé : « Le nombre 9 est le carré d'au moins un nombre entier. » signifie « il existe un nombre entier y tel que $y^2 = 9$ » et se traduit par la formule : $\exists y \in \mathbb{Z}, \ y^2 = 9$.

L'énoncé : « Tout nombre réel positif est le carré d'au moins un nombre réel. » signifie : « Pour tout $x \ge 0$, il existe un nombre réel y vérifiant : $y^2 = x$. » et se traduit par la formule : $\forall x \ge 0, \exists y \in \mathbb{R}, \ y^2 = x$.

Notation:

La notation $\exists ! x \in E$, P(x) signifie que l'énoncé P(x) est vrai pour exactement **un** x appartenant à E. On lit alors : « Il existe un **unique** élément x dans E tel que P(x) est vrai ».

Remarque 1.31 – Dans un énoncé, l'expression « il existe un x » signifiera toujours implicitement qu'il en existe au moins un. L'unicité sera toujours explicitement indiquée.

Méthode 1.32 -

Pour démontrer un énoncé du type « $\exists x \in E, P(x)$ », il suffit de trouver **un** élément x de notre choix qui vérifie la propriété P(x).

Généralement, on cherche au brouillon l'élément x en question puis on rédige en donnant l'élément x en question et en justifiant qu'il convient bien.

Exemple 1.33 – Montrons que $\exists x \in \mathbb{Z}, x + x^4 = 14$.

On fixe x = -2. Alors

$$x + x^4 = (-2) + (-2)^4 = -2 + 16 = 14.$$

On a trouvé $x \in \mathbb{Z}$ tel que $x + x^4 = 14$, donc on a bien montré que $\exists x \in \mathbb{Z}, x + x^4 = 14$.

ATTENTION! ∀ et ∃ sont des symboles mathématiques et ne sont pas des abréviations. On ne peut donc pas les utiliser dans une phrase en français.

3 - Ordre des quantificateurs

ATTENTION! L'ordre des quantificateurs est important.

Règle : On peut toujours échanger l'ordre de deux ∀ ou de deux ∃ qui se suivent.

Exemple 1.34 - Il revient au même d'écrire

 $\forall x \in \mathbb{N}, \ \forall y \in \mathbb{Z}, \ xy \in \mathbb{Z}$ $\forall y \in \mathbb{Z}, \ \forall x \in \mathbb{N}, \ xy \in \mathbb{Z}.$

En règle générale, on ne peut pas permuter un ∀ et un ∃: En effet, l'élément qui suit le symbole ∃ dépend de tout ou partie de ce qui le précède.

Exemple 1.35 –

« Dans toute cerise, il y a un noyau. » $\forall c \text{ cerise}$, $\exists n \text{ noyau}$, n est dans c

 $\left\{ \begin{array}{l} \text{ «Il existe un noyau qui se trouve dans toutes les cerises. »} \\ \exists n \text{ noyau} \,, \quad \forall c \text{ crise,} \quad n \text{ est dans } c \end{array} \right.$

4 - Négation d'une proposition commençant par un quantificateur

Proposition 1.36 - Négation de propositions quantifiées

- 1. La négation de « $\forall x \in E$, P(x) » est « $\exists x \in E$, non P(x). »
- 2. La négation de « $\exists x \in E$, P(x) » est « $\forall x \in E$, non P(x). »

Exemple 1.37 - Il est équivalent de dire :

 $non(\forall x \in E, P(x))$

 $\exists x \in E, \text{non } P(x)$

«Il est faux que tout homme a les yeux bleus » et «Certains hommes n'ont pas les yeux bleus ».

Exemple 1.38 – L'énoncé : « La suite $(u_n)_{n\in\mathbb{N}}$ n'est pas croissante. » signifie : « L'inégalité $u_{n+1}\geqslant u_n$ n'a pas lieu pour tout entier n. », c'est-à-dire « Il existe (au moins) un indice n vérifiant : $u_{n+1} < u_n$. », ce qui se traduit par la formule : $\exists n \in \mathbb{N}, u_{n+1} < u_n$ qui est la négation de $\forall n \in \mathbb{N}, u_n \leq u_{n+1}$.

Méthode 1.39 - Notion de contre-exemple

Supposons que la proposition

 $\forall x \in E, \quad P(x)$

est fausse. Comment le prouver? Pour cela, on démontre que sa négation est vraie. Sa négation est

 $\exists x \in E, \text{non } P(x)$

Ainsi, il suffit de trouver un élément $x_0 \in E$ tel que $P(x_0)$ est fausse. x_0 est alors appelé un **contre-exemple** de $\exists x \in E, \text{non } P(x).$

Exemple 1.40 –

Pour démontrer que la proposition « Tous les nombres impairs sont premiers » est fausse, on donne un contre exemple en montrant qu'« il existe un nombre impair qui n'est pas premier. » Le nombre 57 est ici un contre exemple. (Nombre premier de Grothendieck)

III - Ensembles

1 – Inclusion et ensemble des parties d'un ensemble

Définition 1.41 –

- Un **ensemble** *E* est une collection ou un groupement d'objets distincts. Les objets *x* de *E* s'appellent les **éléments** de *E*.
- Si E est un ensemble et si x est un élément de E, on dit que x appartient à E et on écrit $x \in E$. Dans le cas contraire, si x n'est pas un élément de E, on dit que x n'appartient pas à E et on écrit $x \notin E$.

Remarque 1.42 – Il existe un et un seul ensemble sans élément, appelé l'ensemble vide et noté \varnothing .

Un ensemble peut être écrit de deux façons :

- 1. en **extension** : on donne la liste des éléments de l'ensemble entre accolades. Par exemple {1,3,6,9,10} est un ensemble écrit en extension. Cette écriture des ensembles est pratique pour les ensembles finis (contenant un nombre fini d'objets) ayant un petit nombre d'éléments.
- 2. en **compréhension** : on décrit l'ensemble comme une collection d'objets qui vérifient une propriété. Les formes les plus courantes de cette écriture sont $\{x \in B \mid x \text{ vérifie telle propriété}\}$ et $\{F(x) \mid x \in A\}$, où A et B désignent des ensembles et F(x) une expression dépendant de x.

Remarque:

 $\{F(x) \mid x \in A\} = \{y \in B \mid \exists x \in A, y = F(x)\}\$ où B est un ensemble tel que pour tout $x \in A, f(x) \in B$.

Par exemple, $\{2k \mid k \in \mathbb{N}\}\$ et $\{n \in \mathbb{N} \mid \exists k \in \mathbb{N}, \ n = 2k\}$ sont deux écritures en compréhension de l'ensemble des nombres entiers naturels pairs.

Un autre exemple:

$$[-1;1] = \{x \in \mathbb{R} \mid -1 \le x \le 1\} = \{\cos(x) \mid x \in \mathbb{R}\}\$$

L'écriture en compréhension est la plus utilisée car elle permet de décrire de nombreux ensembles ayant un nombre fini ou infini d'éléments.

Exemple 1.43 –

- 1. Écrire en compréhension :
 - (a) l'ensemble *I* des nombres impairs;
 - (b) l'ensemble des réels dont le cosinus est négatif;
 - (c) l'ensemble E des suites réelles indexées par $\mathbb N$ dont le premier terme vaut 0 (l'ensemble des suites réelles indexées par $\mathbb N$ se note $\mathbb R^{\mathbb N}$).
- 2. Écrire en extension l'ensemble des nombres entiers premiers et inférieurs à 10.
- 1. (a) $I = \{2k+1 \mid k \in \mathbb{N}\} = \{n \in \mathbb{N} \mid \exists k \in \mathbb{N}, n = 2k+1\}.$
 - (b) $\{x \in \mathbb{R} \mid \cos(x) \leq 0\}.$
 - (c) $E = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid u_0 = 0\}.$
- $2. \{2,3,5,7\}.$

Définition 1.44 (Cardinal d'un ensemble fini) – Pour tout ensemble FINI E, on appelle **cardinal** de E, et on note |E| (ou Card(E) ou #E) le nombre d'éléments de E.

Exemple 1.45 - Déterminer les cardinaux suivants.

- Card $(\{0,3,7\}) = 3$
- Card $(\emptyset) = 0$
- Card ([1, n]) = n

- Card ([0, n]) = n + 1
- Card ([[a,b]]) = b a + 1

Définition 1.46 – Soient *A* et *B* deux ensembles.

• On dit que A est **inclus** dans B et on écrit $A \subset B$ si tout élément de A est un élément de B i.e.

$$\forall x \in A, \quad x \in B$$

On dit que A est un **sous-ensemble** de B ou encore que A est une **partie** de B.

On dit aussi que *B* **contient** *A* et on note parfois $B \supset A$.

- On note $A \subsetneq B$ si A est **strictement inclus** dans B, c'est à dire si $A \subset B$ et s'il existe un élément de B qui n'appartient pas à A. On dit alors que A est un **sous-ensemble propre** de B.
- Les ensembles A et B sont **égaux** si et seulement si $A \subset B$ et $B \subset A$. On note alors A = B.

Exemple 1.47 – $\emptyset \subsetneq \mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q} \subsetneq \mathbb{R}$.

Diagramme de Venn. Ce sont des représentations schématiques d'ensembles. Par exemple, on peut schématiser l'inclusion $A \subset B$ de la façon suivante :

Remarque 1.48 - En utilisant des quantificateurs, on a :

$$A \subset B \iff \forall x \in A, x \in B$$

Exemple 1.49 - On considère les ensembles suivants :

$$A = \{1, 5, a, \Delta\}, B = \{1, a, \Delta\}, C = \{1, 5\}, D = \{5, a, \Delta\}, E = \{1, 2, 5, \Delta\}.$$

Cherchons les différentes inclusions entre ces ensembles.

On a $B \subset A$, $C \subset A$, $D \subset A$ et $C \subset E$.

Méthode 1.50 -

- Pour montrer une inclusion $A \subset B$, on prend un élément quelconque de A et on essaie de démontrer qu'il appartient à B.
- Pour montrer l'égalité de deux ensembles A et B, on procède souvent par double-inclusion, en démontrant que $A \subset B$ puis que $B \subset A$.

Exemple 1.51 – Soit $E = \{$ suites géométriques de raison $q \in]-1;1[\}$ et $F = \{$ suites convergentes $\}$. Montrons que $E \subset F$. Soit $(u_n)_n \in E$. La suite $(u_n)_n$ est géométrique de raison $q \in]-1;1[$ donc, pour tout $n \in \mathbb{N}$, $u_n = u_0 \times q^n$. Ainsi, $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} u_0 \times q^n = 0$ car $q \in]-1;1[$. Ainsi, $(u_n)_{n \in \mathbb{N}}$ converge. Donc $(u_n)_n \in F$.

Exemple 1.52 - On considère les ensembles :

$$T = \{x \in \mathbb{R} \mid (x-1)(x-3) \ge 0\} \text{ et } S = \{x \in \mathbb{R} \mid x \ge 3\}.$$

Montrer que $S \subsetneq T$.

Soit $x \in S$, on a donc $x \geqslant 3$. Ceci implique que $x - 3 \geqslant 0$ et que donc $x - 1 \geqslant 0$. Ainsi $(x - 1)(x - 3) \geqslant 0$ et $x \in T$. Montrons que cette inclusion est stricte. Pour cela exhibons un élément de T qui n'est pas dans S. On a $0 \in T$. En effet,

$$(0-1)(0-3)=3 \ge 0.$$

Et pourtant $0 \not\ge 3$. Ainsi $S \subsetneq T$.

Exemple 1.53 – Montrer que $\{\cos(x) + 1 \mid x \in \mathbb{R}\} \subset [-3; 5[$.

Soit $y \in \{\cos(x) + 1 \mid x \in \mathbb{R}\}$. Alors il existe $x \in \mathbb{R}$ tel que $y = \cos(x) + 1$.

On sait que $-1 \le \cos(x) \le 1$, donc

$$0 \leqslant \cos(x) + 1 \leqslant 2$$

 $y = \cos(x) + 1$, donc $-3 \le 0 \le y \le 2 < 5$, d'où $y \in [-3; 5[$.

Cela étant vrai pour tout $y \in \{\cos(x) + 1 \mid x \in \mathbb{R}\}$, on a $\{\cos(x) + 1 \mid x \in \mathbb{R}\} \subset [-3; 5[$.

Proposition 1.54

Soient *A*, *B* et *C* trois ensembles. Alors :

• $A \subset A$.

• $\emptyset \subset A$.

• Si $A \subseteq B$ et $B \subseteq C$ alors $A \subseteq C$.

Démonstration. Démontrons le troisième point.

Supposons que $A \subseteq B$ et $B \subseteq C$. Soit $x \in A$. Comme $A \subseteq B$, alors $x \in B$. Et comme $B \subseteq C$, on a aussi $x \in C$. Donc pour tout $x \in A$, on a aussi $x \in C$. Ce qui implique que $A \subseteq C$.

Définition 1.55 – Soit E un ensemble. L'ensemble des parties de E, noté $\mathcal{P}(E)$ est l'ensemble dont les éléments sont tous les sous-ensembles de E. Autrement dit :

$$X \in \mathcal{P}(E) \iff X \subset E$$

Exemple 1.56 -

- $\mathcal{P}(\emptyset) = \{\emptyset\}$
- $\mathcal{P}(\{7\}) = \{\emptyset, \{7\}\}$

- $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}$
- $\mathcal{P}(\{a,b,c\}) = \{\emptyset,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$

ATTENTION! Appartenance ≠ Inclusion

Il est en effet très important de bien distinguer les deux symboles \in et \subset : le premier concerne un élément appartenant à un ensemble, le second concerne un ensemble inclus dans un autre ensemble.

Soient A et E deux ensembles, on écrira $A \subseteq E$ mais $A \in \mathcal{P}(E)$ car $\mathcal{P}(E)$ est un ensemble d'ensembles et ses éléments sont donc des ensembles.

2 - Intersection et réunion

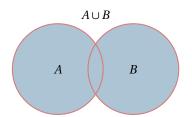
Définition 1.57 – Soit *E* un ensemble, soient *A* et *B* deux sous-ensembles de *E*.

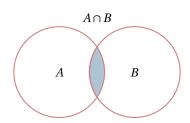
• La **réunion** des ensembles *A* et *B* est le sous-ensemble de *E* constitué des éléments qui sont dans *A* **ou** dans *B*, noté *A* ∪ *B* :

$$A \cup B = \{ x \in E \mid x \in A \text{ ou } x \in B \}$$

• L'**intersection** des ensembles *A* et *B* est le sous-ensemble de *E* constitué des éléments qui sont à la fois dans *A* ET dans *B*, noté *A* ∩ *B* :

$$A \cap B = \{ x \in E \mid x \in A \text{ et } x \in B \}.$$





Remarque 1.58 – Soient *A* et *B* deux sous-ensembles de *E*. Alors on a toujours les inclusions suivantes :

$$A \cap B \subset A \subset A \cup B$$
 et $A \cap B \subset B \subset A \cup B$.

Lorsque deux sous-ensembles de E vérifient $A \cap B = \emptyset$, on dit que les ensembles A et B sont **disjoints.**

Exemple 1.59 – $] -5;2[\cup]1;4] =] -5;4]$

et $]-5;2[\cap]1;4]=]1;2[$

Exemple 1.60 – Soient A =]-1;1[, B = [-2;0[et C = [0;5[. Déterminer :

 $A \cap B$, $A \cup B$, $A \cap B \cap C$, $A \cup B \cup C$, $A \cap (B \cup C)$, $A \cup (B \cap C)$, $(A \cup B) \cap (A \cap C)$

- $A \cap B =]-1;0[$
- $A \cup B = [-2; 1[$
- $A \cap B \cap C = \emptyset$
- $A \cup B \cup C = [-2;5]$

- $A \cap (B \cup C) = A \cap [-2; 5[=A=]-1; 1[$
- $A \cup (B \cap C) = A \cup \emptyset = A =]-1;1[$
- $(A \cup B) \cap (A \cap C) = [-2; 1[\cap [0; 1] = [0; 1]]$

Proposition 1.61

1. L'intersection et l'union sont **commutatives** : pour toutes parties *A*, *B* de *E*,

 $A \cap B = B \cap A$ et $A \cup B = B \cup A$.

2. L'intersection et l'union sont **associatives** : pour toutes parties *A*, *B*, *C* de *E*,

 $A \cap (B \cap C) = (A \cap B) \cap C = A \cap B \cap C$

 $A \cup (B \cup C) = (A \cup B) \cup C = A \cup B \cup C.$

 $A \cap B \cap C$ est l'ensemble des éléments communs aux sous-ensembles A, B, C. $A \cup B \cup C$ est l'ensemble des éléments qui sont dans l'un au moins des sous-ensembles A, B, C.

- 3. *E* est **élément neutre** pour l'intersection : pour toute partie *A* de *E*, $E \cap A = A$. \emptyset est **élément neutre** pour l'union : pour toute partie *A* de *E*, $A \cup \emptyset = A$.
- 4. L'intersection et la réunion sont **distributives** l'une de l'autre : pour toutes parties *A*, *B*, *C* de *E*,

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C),$

 $A\cup (B\cap C)=(A\cup B)\cap (A\cup C).$

Remarque 1.62 – On a également pour *A* un ensemble : $A \cap \emptyset = \emptyset$.

Proposition 1.63

Soient A et B deux ensembles. On a :

 $A \subset B \iff A \cap B = A$ et $A \subset B \iff A \cup B = B$.

Démonstration. Montrons ces deux résultats par double implication :

- (⇒) On suppose que $A \subset B$ et on veut montrer que $A \cap B = A$. D'après une précédente remarque, on sait déjà que $A \cap B \subset A$. Il nous reste donc à montrer que $A \cap B \supset A$. Soit $x \in A$, comme $A \subset B$, on a $x \in B$. Ainsi $x \in A$ et $x \in B$ donc $x \in A \cap B$.
- (\Leftarrow) On suppose que $A \cap B = A$ et montrons que $A \subset B$. Soit $x \in A$, alors comme $A = A \cap B$, on a $x \in A \cap B$ donc en particulier $x \in B$. Ainsi $A \subset B$.
- (⇒) On suppose que $A \subset B$ et on veut montrer que $A \cup B = B$. D'après une précédente remarque, on sait déjà que $B \subset A \cup B$. Il nous reste donc à montrer que $A \cup B \subset B$. Soit $x \in A \cup B$ alors $x \in A$ ou $x \in B$. Si $x \in B$, c'est fini. Si $x \in A$, comme on a $A \subset B$, on a aussi $x \in B$. Dans les deux cas, $x \in B$. Ce qui prouve bien que $A \cup B \subset B$.

(\Leftarrow) On suppose que $A \cup B = B$. Montrons que $A \subseteq B$. Soit $x \in A$, alors $x \in A \cup B$. Or $A \cup B = B$ donc $x \in B$ et ainsi $A \subset B$.

Remarque 1.64 – On peut définir la réunion ou l'intersection de plus de deux ensembles. Ainsi, si A_1 , A_2 , A_3 et A_4 désignent quatre ensembles, alors $A_1 \cup A_2 \cup A_3 \cup A_4$ se note $\bigcup_{k=1}^4 A_k$ et de même, $A_1 \cap A_2 \cap A_3 \cap A_4$ se note $\bigcap_{k=1}^4 A_k$. Plus généralement, soit $(A_k)_{k\in\mathbb{N}^*}$ une famille de sous-ensembles de E ,

$$\bigcap_{k=1}^n A_k = \left\{x \in E \,|\, \forall k \in [\![1;n]\!], x \in A_k\right\} \qquad \text{et} \qquad \bigcup_{k=1}^n A_k = \left\{x \in E \,|\, \exists k \in [\![1;n]\!], x \in A_k\right\}.$$

$$\bigcap_{k=1}^{+\infty} A_k = \left\{x \in E \,|\, \forall k \in \mathbb{N}^*, x \in A_k\right\} \qquad \text{et} \qquad \bigcup_{k=1}^{+\infty} A_k = \left\{x \in E \,|\, \exists k \in \mathbb{N}^*, x \in A_k\right\}.$$

Exemple 1.65 – Montrer les égalités suivantes :

1.
$$\bigcup_{k=1}^{+\infty}]-\infty, k] = \mathbb{R}.$$

- Il est immédiat que $\bigcup_{k=1}^{+\infty}]-\infty, k] \subset \mathbb{R}.$
- Soit $x \in \mathbb{R}$. Soit N un entier strictement positif supérieur à x (par exemple N=1 si $x \le 0$ et $N=\lfloor x \rfloor+1$ sinon, où $\lfloor x \rfloor$ est la partie entière de x).

Alors
$$x \le N$$
, donc $x \in]-\infty, N]$ et $x \in \bigcup_{k=1}^{+\infty}]-\infty, k]$. D'où $\mathbb{R} \subset \bigcup_{k=1}^{+\infty}]-\infty, k]$
• Par double inclusion, ces deux ensembles sont bien égaux.

$$2. \bigcap_{k=1}^{+\infty}]-\infty, -k] = \emptyset$$

- Il est immédiat que $\emptyset \subset \bigcap_{k=1}^{+\infty}]-\infty, -k]$.
- Soit $x \in \bigcap_{k=1}^{+\infty}]-\infty, -k]$, alors pour tout $k \in \mathbb{N}*$, $x \in]-\infty, -k]$, c'est-à-dire $x \leqslant -k$. En passant à la limite pour

 $k \to +\infty$, on trouve $x \le -\infty$: impossible. Donc il n'existe pas de x dans l'ensemble. Donc $\bigcap_{i=1}^{+\infty}]-\infty, -k] \subset \emptyset$

• Par double inclusion, on obtient bien l'égalité annoncée.

Définition 1.66 - Soit E un ensemble et A, B deux parties non-vides de E. On dit que A et B forment une partition de E en deux ensembles si:

$$A \cap B = \emptyset$$
 et $A \cup B = E$

Exemple 1.67 – L'ensemble P des entiers pairs et l'ensemble I des entiers impairs forment une partition de \mathbb{Z} .

Méthode 1.68 -

Pour démontrer qu'une proposition P(x) est vraie pour tous les éléments x appartenant à un ensemble E, on peut prouver que P(x) est vraie pour tous les x d'une partie A de E et pour tous les x d'une partie B de E, où A et B forment une partition de E en deux ensembles :

Exemple 1.69 – Montrer que pour tout $n \in \mathbb{N}$, $\frac{n(n+1)}{2}$ est un entier naturel. Soit $n \in \mathbb{N}$.

1. $1 \operatorname{er} \operatorname{cas} : n \operatorname{est} \operatorname{pair}$.

Dans ce cas, il existe un entier k tel que n=2k et $\frac{n(n+1)}{2}=\frac{2k(2k+1)}{2}=k(2k+1)$. Ainsi, $\frac{n(n+1)}{2}$ est le produit de deux nombres entiers donc c'est un entier.

2. 2eme cas : n est impair.

Dans ce cas, il existe un entier k tel que n=2k+1 et $\frac{n(n+1)}{2}=\frac{(2k+1)(2k+2)}{2}=(2k+1)(k+1)$. Ainsi, $\frac{n(n+1)}{2}$ est le produit de deux nombres entiers donc c'est un entier.

Finalement, pour tout $n \in \mathbb{N}$, $\frac{n(n+1)}{2}$ est un entier naturel.

Remarque 1.70 – On peut partitionner *E* en plus de deux ensembles et faire des disjonctions en plus de 2 cas.

3 - Complémentaire

Définition 1.71 – Soit A une partie d'un ensemble E. Le **complémentaire** de A dans E est l'ensemble, noté \overline{A} , de tous les éléments de E qui ne sont pas dans A. Autrement dit :

$$\overline{A} = \{ x \in E \mid x \notin A \}.$$

Exemple 1.72 – Si $E = \mathbb{R}$ et A = [-2; 5[alors $\overline{A} =] - \infty; -2[\cup [5; +\infty[$.

Exemple 1.73 – Soit E = [1; 10[, donner le complémentaire des parties suivantes de E:

$$\emptyset$$
 $A_1 = \{3\}$ $A_2 =]1;8[$ $A_3 = \{5\} \cup [6;7[$ E

- $\overline{\emptyset} = E$
- $\overline{A_1} = [1;3[\cup]3;10[$
- $\overline{A_2} = \{1\} \cup [8; 10[$

- $\overline{A_3} = [1;5[\cup]5;6[\cup[7;10[$
- $\overline{E} = \emptyset$

Proposition 1.74 – Propriétés algébriques du complémentaire

Soient A et B deux parties de E.

- $\overline{\overline{A}} = A$, $\overline{\emptyset} = E$, $\overline{E} = \emptyset$
- Si $A \subset B$ alors $\overline{B} \subset \overline{A}$.

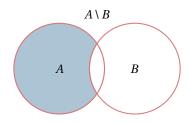
• Lois de Morgan. $\overline{A \cap B} = \overline{A} \cup \overline{B}$ et $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Démonstration. Démontrons la première loi de Morgan. Pour cela, raisonnons par double inclusion.

- (c) Soit $x \in \overline{A \cap B}$, cela veut dire que $x \notin A \cap B$ c'est à dire $x \notin A$ ou $x \notin B$. Autrement dit $x \in \overline{A}$ ou $x \in \overline{B}$, ce qui s'écrit $A \in \overline{A} \cup \overline{B}$.
- (⊃) Soit $x \in \overline{A} \cup \overline{B}$ alors $x \in \overline{A}$ ou $x \in \overline{B}$. C'est à dire $x \notin A$ ou $x \notin B$. Or si $x \notin A$, $x \notin A \cap B$ et si $x \notin B$, $x \notin A \cap B$ donc dans les deux cas $x \notin A \cap B$ i.e. $x \in \overline{A} \cap B$.

Remarque 1.75 – Soient A et B deux parties de E. Le complémentaire de B dans A est l'ensemble, noté $A \setminus B$, de tous les éléments de A qui ne sont pas dans B. Autrement dit :

$$A \setminus B = \left\{ x \in A \mid x \notin B \right\} = A \cap \overline{B}.$$



4 - Produit cartésien

Définition 1.76 (Produit cartésien) -

• Le **produit cartésien** de deux ensembles *E* et *F* est l'ensemble constitué de tous les couples d'éléments (*x*, *y*) avec *x* ∈ *E* et *y* ∈ *F*. On le note *E* × *F*. Ainsi :

$$E \times F = \{(x, y) \mid x \in E \text{ et } y \in F\}.$$

• Plus généralement, si $n \ge 2$ et si $E_1, E_2, ..., E_n$ désignent n ensembles, on définit le produit cartésien $E_1 \times ... \times E_n$ comme l'ensemble des n-uplets $(x_1, x_2, ..., x_n)$ tels que $\forall i \in [1; n]$ $x_i \in E_i$:

$$E_1 \times ... \times E_n = \{(x_1, x_2, ..., x_n) \mid \forall i \in [1; n] \mid x_i \in E_i\}$$

Exemple 1.77 –
$$\{1,2,3\} \times \{0,1\} = \{(1,0),(1,1),(2,0),(2,1),(3,0),(3,1)\}$$

Exemple 1.78 – Le système $\begin{cases} x+y = 1 \\ 2x-y = -7 \end{cases}$ a pour (unique) solution le couple (x,y) = (-2,3).

Ainsi, si on note $\mathcal S$ l'ensemble des solutions de ce système, alors $\mathcal S=\left\{(-2,3)\right\}$. Ici, l'unique solution du système est un élément de $\mathbb R\times\mathbb R$.

ATTENTION! Famille $(x_1,...,x_n) \neq \text{Ensemble } \{x_1,...,x_n\}.$

Alors que les éléments d'un ensemble sont donnés sans ordre et ne peuvent être comptés qu'une seule fois, l'ordre compte dans une famille et les répétitions sont possibles. Par exemple $\{1,2,3\} = \{2,3,1\}$, mais $(1,2,3) \neq (2,3,1)$. Également $\{1,2,2\} = \{1,2\}$, mais $(1,2,2) \neq (1,2)$.

Remarque 1.79 – Lorsque E = F, on note $E^2 = E \times E$ et plus généralement $E^n = \underbrace{E \times ... \times E}_{n \text{ fois}}$ pour tout n dans \mathbb{N}^* .

Exemple 1.80 -

• Le fait qu'une fonction f soit strictement décroissante sur un intervalle I s'écrit :

$$\forall (x_1, x_2) \in I^2$$
 $x_1 < x_2 \Longrightarrow f(x_1) > f(x_2)$

• Le théorème des quatre carrés (Lagrange, 1770) affirme que tout entier naturel n peut s'écrire comme la somme des carrés de quatre entiers. Ce théorème peut s'écrire à l'aide de quantificateurs comme suit :

$$\forall n \in \mathbb{N}$$
 $\exists (a, b, c, d) \in \mathbb{N}^4$ $n = a^2 + b^2 + c^2 + d^2$

Cette écriture n'est pas unique, en effet on peut écrire par exemple $21 = 0^2 + 1^2 + 2^2 + 4^2 = 2^2 + 2^2 + 2^2 + 3^2 = \dots$