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PROPRIETES EVENTUELLES D’UNE SUITE

Suites monotones

Définition 1 : Suite croissante/décroissante/monotone

Soit (1) nen Une suite réelle.

1. (uj)nen est dite strictement croissante 3. (Un)nen est dite croissante lorsque :
lorsque :

VneN, u,<u
VneN, u,<up+ b el

2. (up)nen est dite strictement décrois-

4. (up)nen est dite décroissante lorsque :
sante lorsque :

VneN, u;>upq VneN, u,=upq

La suite (u#,) sen est dite monotone (resp. strictement monotone) lorsqu’elle est croissante ou dé-
\croissante (resp. strictement croissante ou strictement décroissante).

J

Méthode 1 : Montrer qu'une suite est croissante ou décroissante
——————_£—_—_——.

Pour établir qu'une suite est monotone, on peut :
o étudier le signe de la différence u,,+; — u,. En effet,on a:

(Un) nen croissante <= YneN, upp1— Uy =0

(Un) nen décroissante <= VneN, uyi1—u, <0

Un+1
Un

o Lorsque tous les termes de la suite (u,),en Sont strictement positifs, comparer et 1.

En effet, dans ce cas, on a:

Un+1

(Up) nen Croissante <= VneN, =1
Un
. . Un+1
() nen décroissante < VneN, <1
Upn

Exemple :

1. La suite (u,) zen définie par uy = 1 et pour tout entier n, w41 = ufl + u, + 1 est stricte-
ment croissante : Nous avons 1 — Uy, = u% +1 > 0. La suite (#,) ,en €st donc stricte-

ment croissante.
n

2. La suite (u#y) nen définie pour tout entier n par : u, =

1 est strictement croissante :
La suite (uy) nen €St a termes strictement positifs et pour tout entier naturel n,

Ups1 2™ n+1 2x(n+1) 2n+2 L "
= X = = =
Uy n+2 2n n+2 n+2 n+2

Ainsi, la suite (u,),en €st @ termes strictement positifs et pour tout entier naturel n,
Un+1

Un

= 1 donc la suite (u,,) ,en €St croissante.
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Exemple :
 Cas des suites géométriques:
Soit (u,) une suite géométrique de raison g et de premier terme uy donc :

— n+1 n
Up+1 —Un = Up X ( —Up X (

upx q" x(g-1)

La monotonie de la suite dépend du signe de 1y, g" et (g —1)

o Si g <0 alors g" est positif pour n pair, négatif pour n impair donc la suite n’est
pas monotone.

o Si g > 0 alors la suite est monotone, croissante ou décroissante selon le signe du
produit uy x (g—1) .

Sig>1 Sio<g<1
Si ug > 0, alors la Si ug <0, alors la Si ug > 0, alors la Si ug <0, alors la
suite (u;) est suite (u;) est suite (u;) est suite (u;) est
croissante décroissante décroissante croissante
Un Un Une Un
? 933 456 71 123 45 ¢ »n®
® ® [ ] ®
° ° ° °
¢ ® % e o
1 23 456 71 1 23 4356 71 ?

o Cas des suites arithmétiques:
Soit (1) nen une suite arithmétique de raison r. Alors 1,41 = u, +r et donc

Up+1 —Up =T

La monotonie de la suite dépend donc du signe de r :
o Sir<o0alors u,,1 — u, <0etdonc (1) ,en €st décroissante.
¢ Sir=0alors u,.1 —u, =0etdonc (u,),en €St croissante.

Si r <0, la suite (u,,) ,en €st décroissante. Si r =0, la suite (u;,) ,en €St croissante.
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Suite majorée/minorée/bornée

Définition 2 :

Soit (u#,,) nen Une suite réelle.

o (Up)nen est dite majorée par M si : o (Up)nen est dite minorée par m si :
VneN u,s<M VneN u,=2m

o (Up)nen est dite bornée si elle est a la fois majorée et minorée.

(4n) nen €St majorée (Uy,) nen €St Minorée (i) nen €St bornée
Up Un| ",
T e ® & ® U O®
M ° P M - °
[ ] [ ]
° [ ]
° L]
® m ®e ®e0o00o0 o ° n.
m .
n n
n?
Exemple : La suite (u,) ,en définie pour tout entier n par u;, = PO est majorée par 3.
n
Pour tout entier n,on a:
5 3n? 5 3n*-3(n*+1) -3
U, —3= —3 = =
" n?+1 n?+1 n?+1

-3

Or, -3<0et n’>+1>0donc PO < 0. Autrement dit, u,, — 3 < 0 soit u, < 3. Donc, la suite
n

(Un) nen est bien majorée par 3.

LIMITE D’UNE SUITE REELLE

Limite infinie

¢ Ondit qu'une suite (u#,) ey admet une limite égale a +oo quand 7 tend vers +oo si u, prend‘
des valeurs positives aussi grandes que I'on veut, pourvu que I'on choisisse n suffisamment
grand. On écrit :

lim u,=+o0
n—+oo

e On dit qu'une suite (#,) admet une limite égale a —oco quand n tend vers +oo si u, prend
des valeurs négatives aussi grandes que I’on veut, pourvu que I'on choisisse n suffisamment
grand. On écrit :

lim u; =-oco
n—+oo
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Un

Exemple : La suite définie pour tout entier n par u,, = n? tend vers +oo en +oco.
2

Ona: lim n°=+oco.
n—+oo
Limite finie

Définition 4 :

Soit (u,,) nen une suite définie sur N et £ un réel.

1. Dire que la suite (u,)en admet pour limite le réel ¢ signifie que u;, devient aussi proche
que 'on veut de £ pourvu que 'on choisisse 7n suffisamment grand. On écrit :

lim u,=2¢
n—+oo

2. Une suite qui admet pour limite un réel ¢ est dite convergente.

Un

n

1
Exemple : La suite définie pour tout entier n = 1 par u, = 1 - — tend vers 1 en +oo.
n

1
Ona: lim 1-—=1.
n—-+00 n

Proposition 1 :
l La suite (1) ,en converge vers un réel € si, et seulement si, lirP u,—£=0. }
n—+o00

Remarque : Une suite peut ne pas admettre de limite. Par exemple la suite de terme général
(-1)" prend alternativement les valeurs 1 et —1. Elle n’admet pas de limite.
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LIEN ENTRE CONVERGENCE ET INEGALITES

Minoration et majoration

Proposition 2 :

S ——
Soit (Un) nen €t (V) nen deux suites. On suppose que :

VneN, u,<vy,
o Si (4n)nen €t (V) nen convergent, alors
lim u,< lim v,
n—+oo n—+oo

 Si au contraire lim,,_. ; o, V;; = —00, alors (1) zen diverge et

lim u;=-oco0
n—+oo

e Enfin, silim,_. ;1 4, = +oo, alors (v,) ,en diverge et

lim v, =400
n—-+oo

Exemple : Soit (v,) nen définie par
vneN, v,=(2+1")n
En posant u, = n pour tout n, on a bien
VneN, u,<v,
C’est pourquoi on peut affirmer que :

lim v, =+oc0
n—+00

Théoréme des gendarmes

Soient (un) nen, (Vn) nen, €t (Wn) nen trois suites telles que

Si
lim v,= lim w,="¢
n—+oo n—+oo
alors (up) nen converge et
lim u,=2¢
n—-+oo
. A
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Exemple : Soit (u,),en la suite définie pour
tout ne€ N par:

1
un =
2 N Y/
2nc+(-1) U,
Alors, pour toutneN,ona:
\
1 < < 1 \\
. X un > 5
2n +1 2n% -1 /1\
4 e
OI‘ 4 \\ h‘_\.—ﬁ’—j"—.‘t—\g—-o
’ br-——--- TS S Gt
— o o O - e
1_ 1 l' 1 0 o« ® "/'4\‘
im ———= et im ——= -
n—+oco2n2 +1 n—+oo2p2 —1 o
/.
Donc, d’apres le théoréme des gendarmes, '
ona: n
lim u,=0
n—+oo

Théoreme de convergence monotone

Théoréme 2 : Théoreme de convergence monotone

 Si (4y) nen €St Une suite croissante et majorée, alors (u,) ,en converge.
¢ Si (4,)nen est une suite décroissante et minorée, alors (#,) ,en cOnverge.

Exemple : Soit (u,) nen 1a suite définie pour tout entier naturel » par :

2 1

1. Etudier les variations de la suite (1,,) sen-
Pour tout entier n,on a:

Donc, la suite (1) ,en €St décroissante.

2. Montrer par récurrence que u, € [0; 1] pour tout entier naturel 7.
Notons &£ (n) la propriété  « u, =3 ».

1
o Initialisation 1 = 5 € [0;1]. Ainsi, 22(0) est vraie.

o Hérédité. Soit n € N. Supposons & (n) vraie et montrons que & (n + 1) I'est aussi.
Par hypothese de récurrence, u, € [0;1], donc u, = u2. Ainsi, uy1 = u, — u? = 0.
Par ailleurs, puisque u? >0, 0na u,+ = U, — u2 < u, < 1.Bref ona:

O0<upy1 <1 ie uy;€l0;1]

Finalement, 22(n + 1) est vraie et la propriété & est héréditaire.
o Conclusion. La propriété &2 est vraie pour tout n € N, a savoir :

VneN, u,€[0;1]
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3. En déduire que (1) nen converge.
La suite (u,) ,en est décroissante (question 1), et minorée par 0. Donc, d’apres le théo-
reme, elle converge.

4. Déterminer sa limite ¢.

Ona: lim u,= lim u,.1 =L.0r, Uy = Uy — u,21 donc en passant a la limite quand
n—+oo n—+oo
n tend vers I'infini, on obtient :

e=0-¢

Autrement dt, £2 = 0 donc ¢ = 0. Ainsi,

lim wu,=¢
n—+oo
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EXERCICES

m Dans chacun des cas suivants, étudier le sens de variation de la suite (u,) ,en définie
par:

1. VneN* un:l 3. VneN u,=vn+3
n
% n2+1 . 3n
2. VneN U, = 4. VneN U, =—
n n

m Dans chacun des cas suivants, étudier le sens de variation de la suite (u,) ,en définie
par:

1. up=1etpourtoutneN 3. yp=-letpourtoutneN

_ 2
Up+l = Up — Uy un+1:un+n2+2n+1

2. up=1etpourtoutneN
0 p 4. up=0etpourtoutneN

1
Upi1 = Up+ —
(AR P Upi1 = Up+/1+uy,

1. Soit (u,) ey définie par: VneN u,=-n+4.
a. Etablir le tableau de variation de la fonction f définie par f(x) = —x +4.
b. En déduire le sens de variation de la suite () sen.

2. Soit (vy) nen définie par:

U():l
VneN Uns1 = —Un+4=f(vy)

a. Calculer les six premiers termes de la suite.

b. Que peut-on conjecturer quant au sens de variation de (v;,) yen ?

m Soit (u,,) nen la suite définie par :

Ltozl
Upt1 =—2Up+3n+2

On pose pour toutneN, v, =u,—n- %
1. Calculer u;, uy, us, vy, v et vs.
2. Démontrer que la suite (v,) ,eny €st géométrique.
3. Exprimer v, en fonction de n.

4. Exprimer u, en fonction de n.

1 . PP 3n+1
m On consideére la suite (1) ,en définie par u, = 1
n

pour tout n € N.
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1. Montrer que (#4,) ,en €St majorée par 3.

2. En déduire qu’elle est bornée.

m En factorisant le numérateur par 2" et le dénominateur par 3", étudier la convergence

de la suite (1) ,en définie par :
_2"+1
S 3n41

Un

1
On considere la suite (u,) ,en définie par 1y = 2 et Upy+1 =2u, —1 pour tout n € N.
1. On pose v, = u, — 1 pour tout n € N. Montrer que (v,) zen €st géométrique.
2. Exprimer v, puis u, en fonction de n pour tout n € N.

3. Etudier la convergence de (v,,) neny €t de (1) nen.

m On considére la suite (u,) .y définie par ug =1 et u,, 1 = /1 + u2 pour tout n € N.
1. Calculer u;, us et us.
2. Montrer par récurrence que pour tout entier naturel n, u, est égala v'1+ n.

3. Etudierla convergence de (Up) pen-

m Soit (u,,) la suite définie par : up = 16 et pour tout entier naturel n, u,+; =0,75 x u,.
1. a. Quelle est la nature de la suite () ?
b. Exprimer, pour tout entier naturel n, u, en fonction de n.
c. Etudier la monotonie de la suite (u;,).

2. Onnote S, lasomme des n + 1 premiers termes de la suite u,, :

n
Sn=) Up=Up+ui+Up+...+ Up.
k=0

a. Calculer S4.

b. Montrer que pour tout entier 1, S, = 64 (1-0,75"*1).

c. Vers quel réel tend S,, quand 7 tend vers +oo?

m En raison de I'évaporation, une piscine perd chaque semaine 3 % de son volume
d’eau.

On remplit ce bassin avec 90 m® d’eau et, pour compenser la perte due a I'évaporation, on
décide de rajouter chaque semaine 2,4 m3 d’eau dans le bassin.

On note u,, le nombre de m® d’eau contenu dans ce bassin au bout de n semaines.

On a donc uy =90 et, pour tout entier n, U+, =0,97 x U, +2,4.
1. On considere la suite (v,,) définie pour tout entier naturel n par v, = u,, — 80.

a. Démontrer que la suite (v,;) est une suite géométrique dont on précisera le premier
terme et la raison.

10
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b. Exprimer v, en fonction de n. En déduire que pour tout entier naturel n, u, =
80+10x0,97™.

2. Etudier la monotonie de la suite u,,.

3. Déterminer la limite de la suite (u,). Interpréter ce résultat.

m On consideére la suite (u,,) ,en définie par :

Lt():l
Ups1=Up+2n+3

1. Etudier la monotonie de la suite (1) yen-
2. Démontrer, par récurrence, que pour tout entier naturel n, u, > n’.

3. En déduire la limite de la suite (1) zen-

m On consideére la suite () ,en définie par :

{ Ug = -2
1
Up+1 =5Un+ 3
. Montrer que (4,) zen €St majorée par 6.
. Montrer que (u,) ,en €St croissante.

1
2
3. Que peut-on dire de la suite (¢,) yen?
4

. Montrer que la suite (v,) ,en définie par v, = u, — 6 est géométrique. En déduire I'ex-
pression de u, en fonction de n.

5. Déterminer la limite de (¢;,) en-

m On considére la fonction g définie sur R par g(x) = x*. On définit la suite (uy) nery par
up=0,7 et uy+1 = gluy) pour tout n € N.

1. Montrer, par récurrence, que u, €]0; 1[ pour tout n € N.
2. Montrer que (1) ,en €St décroissante.

3. En déduire que (1) nen converge et déterminer sa limite.

m Soit f la fonction définie sur R par f(x) = (1 — x)® + x. On définit la suite (a,) ey €n
posant a,+ = f(ay,) pour tout n € N et ay =0,4.

1. Démontrer que pour tout entier naturel n, 0 < a, < 1.
2. Démontrer que (ay,) sen est croissante.

3. Lasuite (a,) nen converge-t-elle? Si oui, déterminer sa limite.

11
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