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INTEGRALE ET AIRE
Unité d’aire
y
Soit (O; 7; j) un repere orthogonal du plan. j K
Lunité d’aire, notée u.a, est 'aire du rectangle unitaire J N ua
OIJK avec I(0;1), J(0;1) et K(1; 1). ol =+ 1

Intégrale d’'une fonction continue et positive

Soit f une fonction définie, continue et positive sur un intervalle [a; b] et € sa courbe représenta-\
tive dans le plan muni d’un repére orthogonal (O; 7; J).

Lintégrale de f entre a et b est I'aire, exprimée en unités d’aire, du domaine 2 compris entre la
courbe €, I'axe des abscisses et les droites d’équations x = aet x = b

b
Ce nombre est noté : f fx)dx
a

\| v

Remarque :

b
. f f(x)dx selit «intégrale de a a b de f(x)dx ».
a

b
o Lesréels a et b sont appelés les bornes de I'intégrale f f(x)dx.

a
o La variable x est dite « muette », elle n'intervient pas dans le résultat. C’est a dire
qu’on peut la remplacer par n'importe quelle autre variable distincte des lettres a et

b b b
b:f f(x)dx:f f(t)dt:f fdu

. f f(x)dx =0, car le domaine 2 est alors réduit a un segment.
a
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Exemple :

4
Calculons f (—-0,4x +3,6)dx.
-1

La fonction affine f définie pour tout réel x par f(x) = y
—0,4x+ 3,6 est continue et positive sur 'intervalle [—1;4] 4
e s 4 , T < S~ Cgf
Lintégrale (-0,4x +3,6)dx est égale al’aire du trapeéze 3 ~_
-1
ABCD. . T~_C
4 (AD +BC) x AB
(-0,4x+3,6)dx = > 1
-1
4+2)x5 A B
= -1 O 1 2 3 4 X
2
=15

Intégrale d’'une fonction continue et négative

Si f est une fonction continue et négative sur un intervalle [a; b] alors, la fonction g définie
sur l'intervalle [a; b] par g = — f est une fonction continue et positive sur cet intervalle.

Par symétrie par rapport a I'axe des abscisses, 'aire du domaine 9 compris entre la courbe
&, 'axe des abscisses et les droites d’équations x = a et x = b est égale a I'aire du domaine
94 compris entre la courbe €, I'axe des abscisses et les droites d’équations x = a et x = b.

)‘

o | ei—
fo—

=y c
)

<
+ +

Soit f une fonction définie, continue et négative sur un intervalle [a; b] et € sa courbe représen-\
tative dans le plan muni d’un repére orthogonal (O; 7; J).

Lintégrale de la fonction f entre a et b est égale a 'opposé de l'aire ¢, exprimée en unités d’aire,

du domaine ¢ compris entre la courbe 6, I'axe des abscisses et les droites d’équations x = a et

x=Db:

b
f fx)dx=—-<f
a
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Lien entre intégrale et dérivée

Soit f une fonction continue sur un intervalle [a; b]. On peut définir une nouvelle fonction F

X
qui a tout réel x de I'intervalle [a; b], associe 'intégrale de f entre a et x : F(x) = f f(nde
a

Soit f une fonction continue sur un intervalle [a; b].
X

La fonction F définie sur [a; b] par F(x) = f f(r)dt est dérivable sur [a; b] et a pour dérivée f.
a

Exemple :
Soit f la fonction définie sur l'intervalle [-1;4] par

1 5
flx) = —5x+ > Si x est un réel de lintervalle

/,o

\S}

[—1;4], la fonction F définie par F(x) = f f(n)dt est

égale a l'aire du trapeze colorié. On a donc F(x) =
(3+(=0,5x+2,5)) x (x+1) x> 5x 11
= ——+ —+ —. La fonc-
2 4 4 5
X
tion F est dérivable sur [-1;4] et F'(x) = - + 5= f(x).

e = ——————

PRIMITIVES

Définition

Définition 3 :
Soit f une fonction définie sur un intervalle I. On dit que F est une primitive de la fonction f surI
si F est dérivable et si :

Vxel, F@)=/[f(x).

Exemple :
e F:x— x3+3x%—1 est une primitive sur R de f : x — 3x> +6x.
En effet, pour tout x € R, F'(x) = 3x3+6x= f(x)
e G:x— 2y/xestune primitive surR de g: x — —.

\/E
\/_ \/_

e Les fonctions F: x — x%, G: x — x?>+ 1, mais aussi H = x — x* + K, K € R sont des
primitives sur R de la fonction f: x — 2x.
En effet, pour tout x € R, F'(x) = G'(x) = H' (x) = 2x = f(x).

En effet, pour tout x € R, G'(x) = =g(x)

Remarque :
e Comme F est dérivable sur I, la fonction F est en particulier continue sur I.

4
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e Il n'y a pas unicité de la primitive d'une fonction donnée f. C’est pourquoi on parle
d’une primitive de la fonction f et non de la primitive de la fonction f.

Théoreme 2 :
—

» Toute fonction continue sur un intervalle I admet au moins une primitive sur I.

 Si F est une primitive de f sur I, alors toute autre primitive de f sur I est la forme F+c ot ¢
est une constante.

« Il existe une et une seule primitive de f sur I qui prend une valeur donnée en un point
donné:
Si xp € L et yg € R, il existe une unique primitive Fy de f sur I telle que Fy(xp) = yp.

N\

Exemple : La fonction F définie sur R par F(x) = x*>—1 est une primitive de f : x — 2x vérifiant
F(1)=0.
En effet, pour tout x e R, F'(x) =2x = f(x) et F(1) = 12-1=0.

Calculs de primitives

Les opérations sur les fonctions dérivables et la définition d’'une primitive conduisent aux
résultats suivants :

o SiF et Gsontdes primitives des fonctions f et g sur un intervalle I, alors F+ G est une
primitive de f + g surl.

 SiF est une primitives de la fonction f sur un intervalle I et k un réel, alors kF est une
primitive de kf sur L.

2.2.1 Primitives des fonctions usuelles

f estdéfiniesurIpar... une primitive F est donnée validité
par
f(x) = a (aestunréel) F(x)=ax sur R
n+l1
f(x) = x" (n est un entier F(x) = sur R
n+1
naturel)
1 .
fx)=— prochain cours sur ]0; +oo|
X
1 1
fxX)=—= F(x)=-- sur | —oo; 0[ ou sur ]0; +oo|
X X
1 1
x) = — (nentier, n>1 Fx)=—-————— sur | —oo; 0[ ou sur |0; +
fx) x”( ) (x) e | —00;0[ 10; +oof
1
flx)=— F(x) =2Vx sur ]0; +oo
VX

Exemple : Calculer les primitives des fonctions suivantes :
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1
1. f(x)=3x21 5. f(x)=x*+3x+—
F(x)=3x-x*+C=x>+C 1, 3 Zx 1
3 Fx)==x"+-x"——=+C
3 3 2 X
B 1
2. f(x)—x+§ 6. f(x):_5
1,73 Y
F(x):Ex +§x+C F(x):__4+c

3. f(X)=02x+1)(x-3)

1
Tout d’abord, dév n 7. f)=x+2+—
out ‘a ord, é dOppO S ftﬂ f()

VX
—3N=2x2_ _3=952_ 1

(2x+1)(.x .3)—2x ' 6'x.+x 3=2x F(x) = =x2+2x+2,/x+C
5x+3. Ainsi, une primitive est donnée 2

1 1 2
_ 23 By T 42 _ 6x“—8x+2
I;arF();)—ngx 5x2x +3x+C= 8. flx)=—-"T"=
Zy3 2 2x3 —4x% +2x
3x 2x +3x+C F(x) = - +C
1 6
4 =2 9. fW=-4
F(x) ! +C F(x) 6 2 +C
X)) =—— X)=——m—r=——
X 3x3 x3
2.2.2 Primitive des fonctions composées usuelles
u est une fonction dérivable sur un intervalle I.
conditions fonction f une primitive F est donnée
par
un+l
n entier, n >0 f=uu" F=
n+1
annul I o pe_l
u ne s’annule pas sur =— =——
P u? u
, u’ 1
u ne s’annule pas sur I f=— =- —
: u (n—-Du*1!
n entier, n>1
u/
u strictement positive sur I f=— F=2yu
Vu
Exemple : Calculer des primitives des fonctions suivantes :
1. f(x)=(@2x+1)?
f semble étre de la forme u'u? avec
u(x)=2x+1.0na u'(x) =2 donc 2. f(x):m
/ 2 _ 2 _ u'
w(ux)”=22x+1)"=2f(x) f semble étre de la forme —; avec
u
Donc, une primitive de f est donnée u(x)=x+1.0nau'(x) =1donc
par
1 w1 5 u'(x) 1
= — _— = = = = x
F) =5 x—=2@x+1) 0? - Gi1? f@
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Donc, une primitive de f est donnée
par

Donc, une primitive de f est donnée
par

1 1
F =
(x) u(x) x+1 ux)* P -x+1*4
4 4
3. f(x)= !
) (1-3x)2 ,
f semble étre de la forme “ avec _
12 5. f(x)=
u(x) =1-3x.0na u'(x) = -3 donc Vx+2 ,
u' (x) -3 f semble étre de la forme L avec
= =-3f(x) Vu

w(x)? (x+12

Donc, une primitive de f est donnée

u(x) =x+2.0nau'(x) =1.Dong,

par u'(x) _ 1 _ W
B B
-3 u(x) -3 1-3x) 3(1-3x)
Donc, une primitive de f est donnée
4. f(x)=Q2x-Dx*-x+1)3 par:

f semble étre de la forme u'u® avec

ux) =x*—x+1.0nau'(x) =2x-1
donc

F(x) =2V u(x) =2vx+2

W (ux)?® =Cx-1)*-x+1)°% = fx)

INTEGRALE D’UNE FONCTION CONTINUE

Définition

Définition 4 :

S ——
Soit f une fonction continue sur un intervalle I et a et b deux éléments de I. Soit F une primitive\
de f sur L. Lintégrale de f entre a et b est le nombre réel égal a F(b) —F(a) :

b
f f(x)dx =F(b) —F(a).
a

Remarque :

b
o Ladifférence F(b) — F(a) se note [F(x) . Ainsi,
a

b b
f fxdx= [F(x)] = F(b) - F(a)
a a

e Lerésultat ne dépend pas de la primitive F choisie.



Cours de mathématiques ECT1

Exemple :

3 3
. f 32 +2t—1de= |+ 2 —t| =(3%+32-3) - (1°+12-1) =33 -1 =32
1

le 172 1 1
. — [:[——] =1—-—-—=-
1 t2 th 2 2

Proposition 1 :

Soit f une fonction continue sur un intervalle I et a et b dans I. Soit F une primitive de f sur I. On
aalors:

a b a
f f(nde=0 et f f(t)dt:—f f(ode.
a a b

Premiéres propriétés

Proposition 2 :

Soient a et b deux réels tels que a < b. Soit f une fonction continue et positive sur [a; b]. Soit € la
courbe représentative de f. Alors:

b
f f(8)dt est I'aire de la surface comprise entre €, 'axe des abscisses et les droites d’équation
a

x=aetx=Dhb.

Proposition 3 :

a a
 Si f est continue et paire sur [—a; a], alors : fdt= 2[ f(dt.
-a 0

a
o Si f est continue et impaire sur [—a; a] alors : f fdt=0.
-a

Cf Cf
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Exemple :

1
. f BVE2+1de=0
-1

1 1 1 1 1,91 1 1 5
.f t2+|t|dt:2f t2+|t|dt:2f t2+tdt:2[—t3+—t2] =—4-==
-1 0 0 3 2 Jlo 3 2 6

Proposition 4 : Relation de Chasles

Soit f une fonction continue sur un intervalle I et soient a, b et ¢ dans I. Alors :

b c b
f f(t)dt:f f(t)dt+f f(nde.
a a c

Interprétation graphique

Dans le cas ou f est une fonction continue et positive sur
[a; b].

Laire du domaine compris entre la courbe €, 'axe des
abscisses et les droites d’équations x = a et x = b est égale
ala somme des aires du domaine compris entre la courbe
@, 'axe des abscisses et les droites d’équations x = a et
x = ¢ et du domaine compris entre la courbe 6, I'axe des
abscisses et les droites d’équations x = c et x = b.

Proposition 5 : Linéarité de I'intégrale

Soient f et g deux fonctions continues sur un intervalle [a; b]. Alors, pour tout réel o, on a :

b b b b b
f (f(x)+g) dx= f fx) dx+f gx)dx et f af(x)dx = O(f fx)dx
a a a a a

Exemple : Soit a unréel et f la fonction définie sur [-1;1] par:
l-a .
— si -1<x<0

fo=91 1%4
T si O<x<l1

1
Vérifier que f fx)dx=1.
-1

Ona:
1 01_ 11
ff(x)dx:f —adx+f —+adx
1 -1 2 0 2

l1—a [© l+a (!
=— 1dx+—f 1dx
2 Jo

2 Ja
_l—a ]0 l1+a ]1
2 -1 2 0
_l—a 1+a_1
= o=
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EXERCICES

m Pour chacune des fonctions suivantes, donner une primitive et indiquer un intervalle
sur lequel votre réponse est valide :

1. fi(x) =x*>-3x+7 4. fs(x)=7Tx+1)8
“+1 _ 2x+1
2. folx)=—3 5 Jol) = (2 +x+1)4
2
1 _
3. f4(x)=§ 6. fs(x) = Fa

m Dans chacun des cas suivants, déterminer une primitive F de la fonction f définie sur
R

1 — 43 _ 2
L f(0=3x+ 2. f=x—dx+v2 4 f(x):%—gﬂ

m Dans chacun des cas suivants, déterminer une primitive F de la fonction f définie sur
10; +00[

.3 B -2:2 41 VE-2
1. f(x)—3x+x2 2. f(x):T 3. fx)= N

m Dans chacun des cas suivants, calculer la primitive F de la fonction f qui vérifie la
condition donnée.
1

1
1. f estdéfinie sur R par f(x) =x>-5x—1 et F(_E) = >

[\

1
. f est définie sur R par f(x) = 3x*> —5x + 2 et F(1) =0.

w

1
. [ est définie sur ]0; +ool par f(x) = x—?+1 et F(1)=2.

S

2 1
. f est définie sur ]0; +oo| par f(x) = x>+ — et F(1) = —-.
x? 4

)]

1
. f est définie sur ]0; +oo[ par f(x) =2x>—1- = et F(1) =1.

) ) , P+x+1
m Soit F et G les fonctions définies sur ] — 1; +ool par : F(x) = il etG(x) =x—-2+
X
1

x+1

Montrer que F et G sont deux primitives sur | — 1; +oo[ d'une méme fonction f que 'on pré-
cisera.

2x%—4x

m Soit f la fonction définie sur —_—.
2x2+x—1)2

par f(x) =

1
—;+00
2

10
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1 2
Montrer que la fonction G définie sur > +o0o| par G(x) = o1 est une primitive de la
X2+ x-

fonction f.

Dans chacun des cas suivants, déterminer une primitive F de la fonction f.

1
—;+00
2

1. f est définie sur par f(x) =

(2x-1)3
2. f estdéfinie sur R par f(x) = (x +1)(x* +2x —3)3.

3. f estdéfinie sur]1;+oo[ par f(x) =

(x2-1)%
4. f est défini L + f(x)
. festdéfinie sur |—; ar f(x) = ———
2P (1-2x)2
m Calculer les intégrales suivantes :
2
1. A:f (x*-3x+1) dx
-1
6(x2 2
2. B:f (————1) dx
2 2 x2
m Calculer les intégrales suivantes :
3 1 4
1. 11=f (x°+x—2)dx 3. Ing dt
-2 0 V5 +3
11
2. I, = V2x+3dx
3
?+3x- I
m Montrer que la fonction F définie sur ]1; +oo[ par F(x) = 1 est une primitive
x —
de la fonction f définie par
£ x?-5x+1
X)=———
(x—1)?
En déduire la valeur de
fs x?—5x+1
———dx
2 (x—1)?

m Montrer que la fonction F définie sur R par F(x) = 12x?(x> + 1)® est une primitive de
la fonction f définie par
f)=@’+D*

En déduire la valeur de

1
f (x3 + 1)4 dx
0

11
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CORRIGE DES EXERCICES

1. Il s’agit d'un polynéme donc je primitive terme a terme

fx)=x*-3x+7
3 2

X X 15 3,
Fx)=——-3x—+7xx==Xx"—=Xx"+7x
3 2 3 2

2. Ce n’est pas une forme usuelle donc je simplifie pour obtenir une somme
4

x*+1 1

flx) = =x2+ =
x® 1y 1.4 1

FxX)=—+|——|=z-x"——
3 x) 3 X

3.

Je reconnais une forme usuelle que je préfere écrire f(x) = x 3.

1 -
f(X):szs

F(x) X 1

X)=—=——
-2 2x?

f semble étre de la forme u' x u®

avec u(x) =7x+1.
Ona u'(x) =7 donc

W) xux)=7x7x+1)8= 7f(x).
Donc une primitive de f est donnée par

Fl0) = » x u()’ _ < (Tx+1)°.
Y= 9 3 7

. [ semble étre de la forme ;‘—; avec u(x)

2
=x“+x+1.
Onau'(x) =2x+1donc

u'(x)  2x+1 )
u(x)* 2 +x+14 )
Donc une primitive de f est donnée par

Flx) = — 1 _ 1
3(x2+x+ 1)3'

. f semble étre de la forme ‘= \/_ avec u(x) = x>+ 1.
On a u/(x) = 3x? donc
w'(x)  3x°

= =3f(x).
Vulx) vad+1 !

Donc une primitive de f est donnée par

F(x) = - xz\/ u(x) = x3 +

12



Cours de mathématiques ECT1

1. Il s’agit d’'un polynéme donc je primitive terme a terme.

1
f(x):3x2+§
© o1 5 1
F(x)=3x—+—-xx=x"+-Xx
3 2 2

2. Il s’agit d'un polyndme donc je primitive terme a terme.

f(x):x3—4x+\/§
4 2

X X 1
F(x):Z—4x?+\/§xx:2x4—2x2+\/§x

3. Il s’agit d'un polyndme donc je primitive terme a terme.

2

|><
| &=

flx) = +1

x? 1,
F(x) = x—4+1xx==Xx
2 6

X

D= o
w |,

1
——x*+x
6

W] -

1. Il ne s’agit pas d'un polynéme mais d'une somme donc je peux quand méme primiti-
ver terme a terme.

3
f(x):3x+?

2
F(x):3x3+3x

1) 3, 3
—_ | ==x"— -
X 2 X

2. Cen’est pas une forme usuelle donc je simplifie pour obtenir une somme.

X -2x+1 1

f(x)—T—x—2+§
x? 1 1, 1
Fx)=—-2xx——=-x"-2x-—
2 x 2 X

3. Cen’est pas une forme usuelle donc je simplifie pour obtenir une somme.

V-2 2

fx)= NG NG
F(x) =x-2x2Vx=x-4Vx

m Cette fois, on ne me demande pas une primitive mais la primitive vérifiant une condi-
tion supplémentaire. Il faudra donc trouver I'ensemble des primitives, puis exhiber celle qui
satisfait la condition souhaitée.

13
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1. Il s’agit d'un polynéme donc je primitive terme a terme.

3 2
X X 1 5
3 2 3 2

Je calcule 'image en fonction de C puis je résous ’équation.

1\ 1( 1\® 5( 1)\? 1 1 5 1 1 2
Fl-——|==|—2=| - =[-=] -|=|+C=-=-=+-+C=--=-4+C
2] 3\ 2) 2\ 2 2 24 8 2 2 3

AinsiF(—%):% — C:%et

2

1 5 5,
Fx)==-x"—-=x"—-x+-—.
3 2 3

2. Il s’agit d'un polyndme donc je primitive terme a terme.

3 2

X x< 1 3 5., 1
F(x):3X——5X—+—xx+C:x ——x“+-=-x+C
3 2 2 2 2

Je calcule 'image en fonction de C puis je résous ’équation.
5 5 5, 1 5 1
F1)=1"-=-x1"+=x1+C=1--+-+C=C-1
2 2 2 2
AinsiF(1) =0 < C=1et
5 1
F(x)=x"—=x*+-x+1.
2 2
3. Il s’agit d'une somme donc je primitive terme a terme.

x? 1 1, 1
Fx)=—-|——|+1xx+C==-x"+—+x+C
2 X 2

X

Je calcule 'image en fonction de C puis je résous ’équation.
1, 1 1
F1)==x1"+-+1+C==-+2+C
2 1 2

AinsiF(1)=2 < C=-1et

1, 1 1
FxX)==x"+—+x—-.
2 X 2

4. Il s'agit d'une somme donc je primitive terme a terme.
xt 1 1, 2
FxX)=—+2x|——[+C==-x"-—+C
4 X 4 X

Je calcule I'image en fonction de C puis je résous |’équation.

1, 2 7
Fl)=-x1"-2+C=--+C
4 1 4

Ainsi F(1) = —% «— C= % et

1, 2 3
Fx)==-x"——+—-.
4 x 2

14
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5. Il s’agit d'une somme donc je primitive terme a terme.

x4 1 1 4 1
F(x)=2x——-1xx—|—— +C=—-x"—-x+—+C
4 X 2 X

Je calcule I'image en fonction de C puis je résous |’équation.
1, 1 1
F1)==x1"-1+-+C==-+C
2 1 2

AinsiF(1)=1 < C=1et

1 4 1 1
FxX)==x"—-x+—+-.
2 x 2

m Dire que F et G sont deux primitives d'une méme fonction f signifie que qu’elles ont
toutes les deux pour dérivée f. Il me suffit donc de dériver F et G puis de remarquer que
F' = G. Ce sera alors ma fonction f.

OnaF= %, avecu(x)=x*+x+1letv(x)=x+1.

Alors v/ (x) =2x+1etv'(x)=1,etF = %, ie

Rx+Dx+D - (P +x+1D)x1  2x*+2x+x+1-x"—-x-1

! _
Flo) = (x+1)2 (x+1)2

)

donc
X% +2x

F(X)—m.

/ _ x%+2x
OnaF(x) = TSI

Gx)=x-2+ ﬁ est une somme que je dérive terme a terme.

, 1 P+2x+1-1 x*+2x

Gx)=1-0- = = .

(x+1)2 (x+1)2 (x+1)2

On a bien montré que F' = G/, donc que F et G sont bien deux primitives de la méme fonction
2

X +2x
fix— .
(x+1)2

m Plutdt que de montrer que G est une primitive de f, je préfere montrer que f est la
dérivée de G (cest équivalent et bien plus facile).

OnaG=*%, avec u(x) =2x* et v(x) =2x* + x - 1.

Alors u'(x) =4xet V' (x) =4x+1,etG = %, ie

Axx 2x°2+x—-1)=2x%x (4x+1)

G,(x): 2 2 _ 4xx(x—1)—2x?
@x"+x = D7 = 2y
donc )
2x°—4x
Gx)=—————=Ffx).
(%) (2x2+x—1)2 f&

On a bien montré que G’ = f, donc que f est la dérivée de G, donc que G est une primitive
de f.

15
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11.7

1. f semble étre de la forme ;‘—;avec u(x) =2x—-1.0nau'(x) =2 donc

u'(x) 2 2
0P - a1 3™

Donc une primitive de f est donnée par

F(x)—§x - ___ 3
2 2u(x)? 4@x-1)2%

3avec u(x) = x2+2x—-3.0na v/ (x) =2x+2 donc

2. f semble étre de la forme u' x u
u(x) x u(x)® = (2x+2) x (x* +2x-3)3 = 2f ().
Donc une primitive de f est donnée par

1 ux?* 1
F(x) = = x ) :—x(x2+2x—3)4.
2 4 8

3. f semble étre de la forme L’f—; avec u(x) = x*—1.0na u'(x) = 2x donc

u'(x) o 2x
w(x)?2  (x2-1)

5 =2f(x).

Donc une primitive de f est donnée par

F(X) = 2 x —— = ———
2w 2(x2-1)

4. f semble étre de la forme Z—;avec u(x)=1-2x.0nau'(x) = -2 donc

u'(x) -2 1
w? ~ ozez 2
Donc une primitive de f est donnée par
-1 2
F(x)=-2x = .
ulx) 1-2x

1. Une primitive de la fonction f(x) = x?> —3x + 1 est donnée par

x x? 1 4 3,
Fx)=—-3x—+1lxx==x"—=x"+x.
3 2 3 2

2
f (x> =3x+1)x=

1 3
X - =X+ x
-1 3 2

B T O B P I
@(D SEDPH D)

(8 ) ( 1 3 ) 3 3
=|--6+2|-[-=-=- 1|=3-3+=-==
3 3 22



Cours de mathématiques ECT1

6 (1., 2 1., 2
=|=6>+=-6|-|=2°+=-2
» \6 6 2

1 4
:(36+——6)—(§+1—2):31—1=30

1. Une primitive de la fonction f(x) = x> + x — 2 est donnée par
o 1, 1,
FX)=—+—-2xx==-Xx"+-x"—2x.
4 2 4 2

1, 1 3
—xt+=x%-2x
4 2

1., 1 1 1
= (—34+—32—2x3)—(—(—2)4+—(—2)2+2 x 2
47 2 4 2

3
f (X +x-2)x=
_2 _2
81 35

9 99
=|—+--6|-@4+2+4)=—-16=—
4 2 4 4

2. Il faut trouver une primitive a f(x) = v2x+3 = (2x+3) 2.
1
f semble étre de la forme u' x uzavec u(x) =2x+3.0Ona u'(x) =2 donc

W () x u(x) =2 x 2x+3)2 =2 (x).

Donc une primitive de f est donnée par

1 ulx 1 1
F(x) = x (3) x (2x +3)%:§(2x+3)\/2x+3.
2
H I 2x11+3 2x3+3
V2x +3x 2x+3 :(T\/2x11+3)—(T\/2x3+3
3

25 9 125-27 98

=—x5—-—x3=z——mm = —
3 3 3 3

4
Vi5+3®
“avec u(t) =t>+3.0na u'(t) =5¢* donc

3. Il faut trouver une pr1m1t1ve af()=
f semble étre de la forme = \/_

4

VI +3

u' (1) x Vu(r) = =5f(1).

Donc une primitive de f est donnée par

F(t) = - x2\/u(t " +3.

1o 2 1 2
f t:[—\/t5+3 :(— 15+3 —(—\/05+3)
0 V5+3 5 0 9]
2 2 4-23
=—x2—=X =
5 5
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m Je préfere montrer que f estla dérivée de F.
OnaF= %, avec u(x)=x*+3x—-letv(x)=x—1.
Alors v/ (x) =2x+3et vV (x)=1,etF = %, ie

Rx+3)(x—1) - (¥ +3x-1)x1 2x*+x-3-x*-3x+1
(x—1)2 - (x—1)2

F(x) =

’

donc
2

xX“-2x-2
(x—1)2

Onamontré F = f, i.e f estla dérivée de F, i.e F est une primitive de f.

F'(x) = = f(x).

Donc une primitive de la fonction f(x) = xix__zf);z est donnée par
F(x)_x2+3x—1
o ox-1
fsxz—zx—z ~ x2+3x—1r_ 32+3x3—1) 22+3x2-1
s (x—1)2 x-1 |, 3-1 2-1
171
2 T2

m Je préfere montrer que f estla dérivée de F.
OnaF=u? avec u(x) = x>+ 1.Alors ¢/ (x) =3x* et F =4u'u’, i.e

F/(x) =4 x3x* x (x* +1)° = f(x).

Onamontré F = f, i.e f estla dérivée de F, i.e F est une primitive de f.
Donc une primitive de f(x) = 12x? (x> + 1) est F(x) = (x* + 1)%.

1 1
f 220+ %= | (P +1)'] =(1+1)' - (07 +1)" =16-1=15
0

18
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