Interro de cours – Numéro 7

Exercice 1 – On définit l'application : $f: \left\{ \begin{array}{ccc} \mathbb{R} \setminus \left\{ \frac{3}{5} \right\} & \longrightarrow & \mathbb{R} \setminus \left\{ -\frac{2}{5} \right\} \\ x & \longmapsto & \frac{2x+1}{-5x+3} \end{array} \right.$. Montrer que f est bijective et déterminer f^{-1} .

Solution : Soit $y \in \mathbb{R} \setminus \{-\frac{2}{5}\}$, montrons que l'équation f(x) = y possède une unique solution dans $\mathbb{R} \setminus \{\frac{3}{5}\}$ et déterminons-la. Soit $y \in \mathbb{R} \setminus \{-\frac{2}{5}\}$, on a :

$$f(x) = y \iff \frac{2x+1}{-5x+3} = y \iff 2x+1 = y(-5x+3) \iff x(2+5y) = 3y-1.$$

Or $y \in \mathbb{R} \setminus \{-\frac{2}{5}\}$ donc $2 + 5y \neq 0$, ainsi $x = \frac{3y - 1}{2 + 5y}$. Il reste à vérifier que $x \in \mathbb{R} \setminus \{\frac{3}{5}\}$. Pour cela, raisonnons par l'absurde et supposons que $x = \frac{3}{5}$. On a alors :

$$x = \frac{3}{5} \iff \frac{3y-1}{2+5y} = \frac{3}{5} \iff 5(3y-1) = 3(2+5y) \iff -5 = 6$$
 Absurde.

Ainsi $x \in \mathbb{R} \setminus \{\frac{3}{5}\}$ et $y \in \mathbb{R} \setminus \{-\frac{2}{5}\}$ admet bien un unique antécédent.

On en conclut que f est bijective sur $\mathbb{R}\setminus\{\frac{3}{5}\}$ et sa bijection réciproque f^{-1} est définie de $\mathbb{R}\setminus\{-\frac{2}{5}\}$ dans $\mathbb{R}\setminus\{\frac{3}{5}\}$ par

$$f^{-1}(x) = \frac{3x - 1}{2 + 5x}.$$

Exercice 2 – Montrer que la fonction arcsin est dérivable sur] – 1;1[et que

$$\forall x \in]-1;1[, \quad \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$$

Solution : Pour tout $y \in]-1,1[$, sin est dérivable en Arcsin(y) et

$$\sin'(\operatorname{Arcsin}(y)) = \cos(\operatorname{Arcsin}(y)) = \sqrt{1 - \sin(\operatorname{Arcsin}(y))^2} = \sqrt{1 - y^2}.$$

Donc $\sin'(Arcsin(y)) \neq 0$. On a donc que Arcsin est dérivable en y et

$$Arcsin'(y) = \frac{1}{\sin'(Arcsin(y))} = \frac{1}{\sqrt{1 - y^2}}.$$