DEVOIR MAISON 2

Exercice 1 – On considère la fonction f dont l'expression est

$$f(x) = 2\arctan\left(\frac{x}{2}\right) + \frac{2}{x}$$
.

Le but de cet exercice est de tracer \mathcal{C}_f , la courbe représentative de f dans un repère orthonormé.

- 1. Déterminer D le domaine de définition de f.
- 2. Étudier la périodicité et la parité/imparité éventuelle de f. Le cas échéant, en déduire un domaine d'étude D' réduit.
- 3. Dresser le tableau de variations de f (on n'oubliera pas d'y faire figurer les limites de f aux bornes de D').
- 4. La fonction f admet-elle des asymptotes, horizontales ou verticales? Si oui, donner leurs équations. Pour les asymptotes horizontales, préciser si \mathcal{C}_f est au-dessus ou en-dessous de l'asymptote.
- 5. Déterminer l'équation de la tangente au point d'abscisse $\frac{2}{\sqrt{3}}$.
- 6. Tracer C_f dans un repère orthonormé. On y fera figurer tout ce qui a été trouvé aux questions précédentes et les tangentes horizontales.

Exercice 2 - Résoudre dans C l'équation

(E)
$$z^8 + (1-i)z^4 - 2 - 2i = 0$$
.

Exercice 3 – Soit la fonction $f : \mathbb{R}_+^* \longrightarrow \mathbb{R}_+^*$ définie par :

$$\forall x \in]0, +\infty[, \quad f(x) = 1 + \frac{2}{x}.$$

On considère alors la suite $(u_n)_{n\geqslant 0}$ définie par $u_0=1$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=f(u_n)$.

- 1. Dresser le tableau de variations de f sur [1,3].
- 2. En déduire que : $f([1,3]) \subset [1,3]$, c'est à dire que : $\forall x \in [1,3]$, $f(x) \in [1,3]$.
- 3. Démontrer que : $\forall n \in \mathbb{N}$, u_n est bien défini et $u_n \in [1,3]$.
- 4. Pour tout *n* ∈ \mathbb{N} , on pose $v_n = u_{2n}$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, $v_{n+1} = g(v_n)$ où $g = f \circ f$.
 - (b) Déterminer v_0 et v_1 . En déduire que $v_0 \le v_1$.
 - (c) Montrer par récurrence que $(v_n)_{n \ge 0}$ est croissante.
- 5. Pour tout $n \in \mathbb{N}$, on pose $w_n = u_{2n+1}$.
 - (a) Montrer que pour tout $n \in \mathbb{N}$, $w_{n+1} = g(w_n)$ où $g = f \circ f$.
 - (b) Etudier la monotonie de $(w_n)_{n\geqslant 0}$.
- 6. En déduire que les suites $(v_n)_{n\geqslant 0}$ et $(w_n)_{n\geqslant 0}$ sont convergentes.
- 7. Déterminer l'expression de g(x) pour tout $x \in [1,3]$.
- 8. En déduire les points fixes de g sur cet intervalle, c'est à dire les réels x vérifiant g(x) = x.
- 9. Déterminer les limites respectives de $(v_n)_{n\geq 0}$ et $(w_n)_{n\geq 0}$.
- 10. Conclure.