INTERRO DE COURS – NUMÉRO 5

Exercice 1 -

1. Rappeler les propriétés algébriques de l'exponentielle et du logarithme ($\ln(a \times b) = ...$, $e^{a+b} = ...$).

Solution : Soient a > 0 et b > 0, et $n \in \mathbb{Z}$,

$$\ln(a \times b) = \ln(a) + \ln(b), \ln\left(\frac{1}{a}\right) = -\ln(a), \ln\left(\frac{a}{b}\right) = \ln(a) - \ln(b), \ln(a^n) = n\ln(a), \ln(\sqrt{a}) = \frac{1}{2}\ln(a)$$

Soient a et $b \in \mathbb{R}$ et $n \in \mathbb{Z}$,

$$e^{a+b} = e^a \times e^b$$
, $e^{a-b} = \frac{e^a}{e^b}$, $e^{-a} = \frac{1}{e^a}$, $e^{na} = (e^a)^n$

2. Rappeler les résultats de croissance comparée.

Solution : Soient a et b > 0. On a :

$$\lim_{x \to +\infty} \frac{\left(\ln(x)\right)^a}{x^b} = 0 \quad \text{et} \quad \lim_{x \to 0^+} \left(\ln(x)\right)^b x^a = 0$$

$$\lim_{x \to +\infty} \frac{x^a}{e^{bx}} = 0 \quad \text{ et } \quad \lim_{x \to -\infty} x^a e^{bx} = 0$$

Exercice 2 -

1. Simplifier les deux expressions suivantes :

$$A = \ln((3x-1)^2) - \ln\left(\frac{3x-1}{2}\right) + \ln(\sqrt{3x-1}) - \ln\left(\frac{(3x-1)(x^2+1)}{2}\right)$$
$$B = \frac{e^{x^2+1} \times (e^{2x})^2}{e^{\ln(x)-x^2+4} \times e}$$

Solution:

$$A = 2\ln(3x - 1) - \ln(3x - 1) + \ln(2) + \frac{1}{2}\ln(3x - 1) - \ln(3x - 1) - \ln(x^2 + 1) + \ln(2)$$
$$= \frac{1}{2}\ln(3x - 1) - \ln(x^2 + 1) + 2\ln(2)$$

$$B = \frac{e^{x^2 + 1 + 4x}}{x e^{-x^2 + 4 + 1}} = \frac{e^{x^2 + 4x + 1 + x^2 - 5}}{x} = \frac{e^{2x^2 + 4x - 4}}{x}$$

2. Étudier et tracer sur son ensemble de définition la fonction f définie par

$$f(x) = \frac{\ln(x)}{x^2}$$

Solution : La fonction ln est définie sur \mathbb{R}_+^* . La fonction $x \mapsto x^2$ est définie sur \mathbb{R} et s'annule en 0 uniquement. Donc, par quotient, f est définie sur \mathbb{R}_+^* .

La fonction f est dérivable sur \mathbb{R}_+^* comme quotient de fonctions dérivables sur \mathbb{R}_+^* dont le dénominateur ne s'annule pas sur \mathbb{R}_+^* . Par ailleurs, pour tout x > 0,

$$f'(x) = \frac{\frac{1}{x} \times x^2 - 2x \ln(x)}{x^4} = \frac{x - 2x \ln(x)}{x^4} = \frac{x(1 - 2\ln(x))}{x^4} = \frac{1 - 2\ln(x)}{x^3}$$

Or, pour tout x > 0, on a $1 - 2\ln(x) \ge 0 \iff 2\ln(x) \le 1 \iff \ln(x) \le \frac{1}{2} \iff x \le \exp\left(\frac{1}{2}\right) = \sqrt{e}$, par croissance de la fonction exponentielle.

Par ailleurs, $\lim_{x\to 0^+} f(x) = -\infty$, et $\lim_{x\to +\infty} \frac{\ln(x)}{x^2} = 0^+$ par croissance comparée. Enfin, $f(\sqrt{e}) = \frac{\ln(\sqrt{e})}{\sqrt{e}^2} = \frac{1}{2e}$.

On en déduit le tableau de signes de f' et le tableau de variations de f:

x	0		$\sqrt{\mathrm{e}}$		+∞
$1-2\ln(x)$		+	0	_	
f'(x)		+	0	_	
f	$-\infty$		$\frac{1}{2e}$		0+

On obtient l'allure de courbe suivante :

