INTERRO DE COURS – NUMÉRO 4

Exercice 1 -

1. Soit *n* un entier naturel non nul. Donner la forme des racines *n*-ièmes de l'unité. Comment note-t-on l'ensemble des racines *n*-ièmes de l'unité?

Solution : On note \mathbb{U}_n l'ensemble des racines n-ièmes de l'unité. On a :

$$\mathbb{U}_n = \left\{ \mathrm{e}^{2ik\pi/n}; k \in \mathbb{Z} \right\} = \left\{ \mathrm{e}^{2ik\pi/n}; k \in \llbracket 0, n-1 \rrbracket \right\}$$

2. Rappeler les formules d'Euler.

Solution : Pour tout
$$\theta \in \mathbb{R}$$
, on a $\cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

Exercice 2 -

1. Résoudre l'équation suivante, d'inconnue $z \in \mathbb{C}$:

$$z^2 - (5 - 14i)z - (24 + 10i) = 0$$

Solution : On calcule le discriminant : $\Delta = (5 - 14i)^2 + 4(24 + 10i) = 25 - 196 - 140i + 96 + 40i = -75 - 100i = 25(-3 - 4i)$.

Cherchons les racines carrées complexes de -3-4i. Soit $\delta = a+ib \in \mathbb{C}$. On a :

$$\delta^2 = \Delta \iff \left\{ \begin{array}{l} \delta^2 = \Delta \\ |\delta|^2 = |\Delta| \end{array} \right. \iff \left\{ \begin{array}{l} a^2 - b^2 = -3 \\ 2ab = -4 \\ a^2 + b^2 = 5 \end{array} \right. \iff \left\{ \begin{array}{l} 2a^2 = 2 \\ 2ab = -4 \end{array} \right. \iff \left\{ \begin{array}{l} a = \pm 1 \\ b = \mp 2 \end{array} \right.$$

Ainsi, les racines carrées complexes de Δ sont 5(1-2i) = 5-10i et -5+10i. L'équation admet donc deux solutions qui sont :

$$z_1 = \frac{5 - 14i + 5 - 10i}{2} = 5 - 12i$$
 et $z_1 = \frac{5 - 14i - 5 + 10i}{2} = -2i$

2. Déterminer les racines quatrièmes de $2\sqrt{2} + 2\sqrt{2}i$

Solution : On commence par mettre $2\sqrt{2} + 2\sqrt{2}i$ sous forme exponentielle :

$$2\sqrt{2} + 2\sqrt{2}i = 4\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right) = 4e^{i\pi/4} = \sqrt{2}^4 e^{i\pi/4}$$

Une racine quatrième de $2\sqrt{2} + 2\sqrt{2}i$ est donnée par

$$\sqrt{2} e^{i\pi/16}$$

Les racines quatrième de $2\sqrt{2} + 2\sqrt{2}i$ sont donc données par

$$\sqrt{2}e^{i\pi/16}$$
; $\sqrt{2}e^{i\pi/16}e^{i\pi/2}$; $\sqrt{2}e^{i\pi/16}e^{i\pi}$; $\sqrt{2}e^{i\pi/16}e^{3i\pi/2}$

Autrement dit,

$$\sqrt{2}e^{i\pi/16}$$
; $\sqrt{2}e^{9i\pi/16}$; $\sqrt{2}e^{17i\pi/16}$; $\sqrt{2}e^{25i\pi/16}$

3. Déterminer le lieu géométrique des points dont l'affixe z vérifie $|z-1+i|=\sqrt{2}$.

Solution : Soit $z \in \mathbb{C}$. On note M le point d'affixe z. Alors, on a $|z-1+i|=\sqrt{2}$ si et seulement si, la distance du point M au point d'affixe 1-i est constante égale à $\sqrt{2}$. Ainsi, $|z-1+i|=\sqrt{2}$ si et seulement si, M est sur le cercle de centre $\Omega(1;-1)$ et de rayon $\sqrt{2}$.