DEVOIR SURVEILLÉ 2

Durée: 4h

Les documents, la calculatrice et tout matériel éléctronique sont interdits.

- 1. Rédigez sur une copie double en laissant une marge suffisante au correcteur.
- 2. Numérotez les exos, les questions traitées (et vos copies en fin d'épreuve).
- 3. Encadrez ou soulignez vos résultats.
- 4. Soignez la rédaction!!
- 5. Pour répondre à une question, vous pouvez admettre les résultats d'une question précédente non résolue, du moment que ce soit clairement indiqué sur votre copie.

Ce sujet, comportant 4 pages, est constitué de 2 exercices et 3 problèmes. Bon courage!

Exercice 1 – Pour tout $z \in \mathbb{C}$, on définit

$$P(z) = z^3 - (6+i)z^2 + (-14+10i)z - 16(1+i).$$

- 1. Déterminer l'ensemble des imaginaires purs $z \in i\mathbb{R}$ tels que P(z) = 0.
- 2. Montrer qu'il existe $(a, b, c) \in \mathbb{C}^3$ tel que

$$\forall z \in \mathbb{C}, \quad P(z) = (z+i)(az^2 + bz + c)$$

- 3. En déduire l'ensemble des solutions complexes $z \in \mathbb{C}$ tels que P(z) = 0.
- 4. En déduire l'ensemble des complexes $z \in \mathbb{C}$ tels que

$$z^{21} - (6+i)z^{14} + (-14+10i)z^7 - 16(1+i) = 0$$

Exercice 2 – Le but de cet exercice est de déterminer toutes les fonctions $f : \mathbb{R}_+ \longrightarrow \mathbb{R}$ vérifiant la relation suivante

$$\forall x \in \mathbb{R}_+, \forall y \in \mathbb{R}_+, \quad f(x)f(y) = \sqrt{y}f(2x) + \sqrt{x}f(2y) \quad (\star \star)$$

- 1. Dans toute cette question, on considère f une fonction $f: \mathbb{R}_+ \to \mathbb{R}_+$ vérifiant la relation $(\star \star)$.
 - (a) Vérifier que f(0) = 0.
 - (b) Vérifier que, pour tout $x \in \mathbb{R}_+$, $f(x)^2 = 2\sqrt{x}f(2x)$.
 - (c) En déduire que, $\forall x \in \mathbb{R}_+^*, \forall y \in \mathbb{R}_+^*$,

$$f(x)f(y) = \frac{1}{2\sqrt{xy}} [y(f(x))^2 + x(f(y))^2]$$

- (d) Vérifier alors que, $\forall x \in \mathbb{R}_+^*, \forall y \in \mathbb{R}_+^*$ $(\sqrt{y}f(x) \sqrt{x}f(y))^2 = 0$
- (e) En déduire que la fonction $g: x \in \mathbb{R}_+^* \mapsto \frac{f(x)}{\sqrt{x}}$ est constante.
- (f) Montrer alors que f est la fonction nulle ou la fonction $x \in \mathbb{R}_+ \longrightarrow 2\sqrt{2x}$.
- 2. Conclure.

Problème 1 – Soit *a* un nombre réel. On considère la fonction

$$f_a: x \longmapsto \ln\left(a + \sqrt{x^2 - 1}\right).$$

On note C_a la courbe représentative de f_a et $b = \begin{cases} 1 & \text{si } a > 0 \\ \sqrt{a^2 + 1} & \text{si } a \leqslant 0 \end{cases}$.

- 1. Justifier que $b \ge 1$.
- 2. Résoudre l'équation $a + \sqrt{x^2 1} > 0$ d'inconnue réelle x. On pourra distinguer deux cas suivant le signe de a.
- 3. Montrer que le domaine de définition de f_a est

$$\mathcal{D}_a = \left\{ \begin{array}{ll}]-\infty; -b] \cup [b; +\infty[& \text{si } a > 0 \\]-\infty; -b[\cup]b; +\infty[& \text{si } a \leqslant 0 \end{array} \right.$$

4. Déterminer sur quel domaine \mathcal{D}'_a les théorèmes classiques de l'analyse assurent que f_a est dérivable.

On distinguera encore une fois deux cas suivant le signe de *a*.

- 5. Étudier la parité de f_a .
- 6. Calculer pour tout $x \in \mathcal{D}'_a$ la dérivée $f'_a(x)$. Quel est le sens de variation de f_a sur $\mathcal{D}'_a \cap \mathbb{R}^+$?
- 7. (a) Déterminer la limite en $+\infty$ de f_a .
 - (b) Déterminer la limite en b de f_a . On distinguera les cas où a est strictement positif, nul et strictement négatif.
- 8. Déterminer la limite quand x tend vers $+\infty$ de $f_a(x) \ln(x)$. Que peut-on en déduire concernant les courbes représentatives de f_a et de ln?
- 9. Tracer les allures des courbes représentatives de $f_{\sqrt{3}}$ et $f_{-\sqrt{3}}$. On fera apparaître les asymptotes verticales quand elles existent et on placera la courbe représentative de ln.

Problème 2 - Partie 1: Manipulation d'une expression trigonométrique

Pour tout $x \in \mathbb{R}$, on pose

$$f(x) = \cos^2(x)(\cos(2x) - 1) + \sin^2(x)$$

- 1. Calculer f(0), $f\left(\frac{\pi}{4}\right)$, $f\left(-\frac{\pi}{6}\right)$ et $f\left(\frac{2\pi}{3}\right)$.
- 2. Signe de f(x), méthode 1.
 - (a) Soit $x \in \mathbb{R}$. Exprimer $\cos(2x)$ uniquement en fonction de $\cos(x)$.
 - (b) Montrer que

$$\forall x \in \mathbb{R}, \quad f(x) = 2\cos^4(x) - 3\cos^2(x) + 1.$$

- (c) Résoudre dans \mathbb{R} l'inéquation f(x) < 0.
- 3. Signe de f(x), méthode 2.
 - (a) Montrer que

$$\forall x \in \mathbb{R}, \quad f(x) = -\cos(2x)\sin^2(x)$$

- (b) Retrouver alors le résultat de la question 2.c
- 4. Soit $x \in \mathbb{R}$. Linéariser l'expression de f(x), autrement dit, donner une expression de f(x) uniquement en fonction de $\cos(2x)$ et $\cos(4x)$.

Partie 2 : Inégalité de Winkler

On pose:

$$g: x \mapsto \sin^2(x) + x \tan(x) - 2x^2$$
.

- 5. Préciser \mathcal{D}_g le domaine de définition de g et vérifier que $]0; \frac{\pi}{2} [\subset \mathcal{D}_g]$.
- 6. Calculer la dérivée de g sur]0; $\frac{\pi}{2}$ [.
- 7. Montrer que

$$\forall x \in]0; \frac{\pi}{2} [, \quad g''(x) = 2\cos(2x) + 2\tan^2(x) - 2 + 2(1 + \tan^2(x))x\tan(x)$$

8. En déduire que

$$\forall x \in]0; \frac{\pi}{2} \left[, \quad g''(x) = \frac{2f(x)}{\cos^2(x)} + 2\left(1 + \tan^2(x)\right)x \tan(x) \right]$$

9. A l'aide de la question 3.a montrer que

$$\forall x \in]0; \frac{\pi}{2} \left[, \quad f(x) = -\frac{1}{4}\sin(4x)\tan(x).\right]$$

10. En déduire que

$$\forall x \in]0; \frac{\pi}{2} \left[, \quad g''(x) = \frac{1}{2} \left(1 + \tan^2(x) \right) \tan(x) (4x - \sin(4x)) \right]$$

- 11. On rappelle que pour tout $t \in \mathbb{R}_+^*$, $\sin(t) \leq t$. Montrer que pour tout $x \in \left]0; \frac{\pi}{2}\right[, g(x) > 0$.
- 12. Conclure en démontrant l'inégalité de Winkler :

$$\forall x \in]0; \frac{\pi}{2} \left[, \left(\frac{\sin(x)}{x}\right)^2 + \frac{\tan(x)}{x} > 2.\right]$$

Problème 3 – On considère l'application complexe suivante :

$$f: \ \mathbb{C}\backslash\{2i\} \longrightarrow \mathbb{C}$$

$$z \longmapsto \frac{2z-i}{z-2i}$$

- 1. Calculer f(-2).
- 2. (a) Calculer $f\left(\frac{-3+i}{2}\right)$.
 - (b) Préciser sa forme exponentielle.
 - (c) En déduire $\left(f\left(\frac{-3+i}{2}\right)\right)^{2024}$.
- 3. Déterminer $\{z \in \mathbb{C} \setminus \{2i\} \mid f(z) \in \mathbb{U}\}$.

Pour tout $z \in \mathbb{C} \setminus \{2i\}$, on pose g(z) = Im(f(z)).

- 4. Montrer que pour tout $z \in \mathbb{C} \setminus \{2i\}$, $g(z) = \frac{3 \operatorname{Re}(z)}{|z 2i|^2}$.
- 5. En déduire $\{z \in \mathbb{C} \setminus \{2i\} \mid f(z) \in \mathbb{R}\}$..
- 6. Déterminer $A = \left\{ \theta \in \mathbb{R} \mid 2e^{i\theta} \neq 2i \right\}$.
- 7. Soit $\theta \in A$ et $z = 2e^{i\theta}$.
 - (a) Montrer que $|z 2i|^2 = 16\sin^2\left(\frac{\theta}{2} \frac{\pi}{4}\right)$.
 - (b) En déduire g(z) en fonction de θ .
- 8. En déduire g(-2), est-ce cohérent avec la question 1.?
- 9. Soit $\omega \in \mathbb{C}$. Résoudre, suivant les valeurs de ω , les solutions de l'équation $\omega = f(z)$, d'inconnue $z \in \mathbb{C} \setminus \{2i\}$.
- 10. Justifier que f définit une bijection de $\mathbb{C}\setminus\{2i\}$ dans un ensemble que l'on déterminera et préciser f^{-1} .
- 11. Calculer $f^{-1}(1-i)$. Est-ce cohérent avec la question 2.a?