CORRIGÉ DEVOIR SURVEILLÉ 1

Exercice 1 -

1. $\operatorname{non} A$ est l'assertion : $\exists x \in \mathbb{R}, \ \forall y \in \mathbb{N}, \ \left(x \geqslant y \text{ ou } y \geqslant x+1\right)$.

Montrons que non A est vraie.

Posons x = 0. Soit $y \in \mathbb{N}$ quelconque. On distingue deux cas :

- si y = 0, alors $x \ge y$ donc $x \ge y$ ou $y \ge x + 1$ est vraie.
- si y > 0, puisque y est entier, on a $y \ge 1$ donc $y \ge x + 1$, donc $x \ge y$ ou $y \ge x + 1$ est vraie.

Donc, par disjonction de cas, non A est vraie et donc A est fausse.

2. non*B* est l'assertion $\forall x \in \mathbb{R}, \ \forall y \in \mathbb{R}, \ x^2 \neq y^3$.

Montrons que *B* est vraie. On pose x = 1 et y = 1. Alors $x \in \mathbb{R}$, $y \in \mathbb{R}$ et $x^2 = 1 = y^3$. Donc *B* est vraie.

3. non*C* est l'assertion $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, \left(y > x \text{ ET } y^2 \geqslant x^2\right)$.

Montrons que non*C* est vraie.

Soit $x \in \mathbb{R}$. On pose y = |x| + 1. Alors $y \in \mathbb{R}$. On a $y \geqslant x + 1 > x$ et $y^2 = |x|^2 + 2|x| + 1 \geqslant |x^2| \geqslant x^2$. Donc non C est vraie et C est fausse.

4. non*D* est l'assertion $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}, \left(x < 0 \text{ ET } x \geqslant e^y\right)$.

D est vraie. Prouvons-le par disjonction de cas sur x.

Soient x et y dans \mathbb{R} . Si $x \ge 0$, alors $x \ge 0$ ou $x < e^y$ est vraie.

Si x < 0, alors $e^y > 0 > x$, donc $x \ge 0$ ou $x < e^y$ est vraie. Donc, par disjonction de cas, D est vraie.

Exercice 2 -

- 1. « Si l'entier n est impair, alors l'entier $n^2 1$ est divisible par 4. »
- 2. Supposons que l'entier n est impair. Alors, il existe un entier naturel k tel que n=2k+1. Considérons un tel k. On a :

$$n^2 - 1 = (2k+1)^2 - 1 = 4k^2 + 4k + 1 - 1 = 4(k^2 + k).$$

Puisque $k^2 + k$ est un entier, $4(k^2 + k)$ est divisible par 4 donc $n^2 - 1$ est divisible par 4. On a montré que :

Si l'entier n est impair, alors l'entier $n^2 - 1$ est divisible par 4.

3. La contraposée a la même valeur de vérité que l'implication de départ donc

l'assertion de départ est vraie.

Exercice 3 –

1. Équation (E_1) .

Soit $x \in \mathbb{R}$. On a :

$$|x-1| = |3-x| \iff x-1 = 3-x \text{ Ou } x-1 = x-3$$

 $\iff 2x = 4 \text{ Ou } -1 = -3$
 $\iff x = 2$

Ainsi, l'ensemble des solutions de (E_1) est $S_1 = \{2\}$.

2. Inéquation (E_2) .

On procède par disjonction de cas.

• résolution sur] $-\infty$; 1[. Soit $x \in$] $-\infty$; 1[. On a :

$$|x-1| + |3-x| > 7 \iff -x+1+3-x > 7 \iff -2x > 3 \iff x < -\frac{3}{2}$$

L'inéquation est donc vérifiée sur $\left]-\infty; -\frac{3}{2}\right[$.

• résolution sur [1;3]. Soit $x \in [1;3]$. On a :

$$|x-1|+|3-x| > 7 \iff x-1+3-x > 7 \iff 2 > 7$$

Ceci n'est pas possible donc l'inéquation n'est pas vérifiée sur [1;3].

• résolution sur]3; $+\infty$ [. Soit $x \in$]3; $+\infty$ [. On a :

$$|x-1| + |3-x| > 7 \iff x-1+x-3 > 7 \iff 2x > 11 \iff x > \frac{11}{2}$$

Or, $\frac{11}{2} > 3$. Ainsi, l'inéquation est vérifiée sur $\left[\frac{11}{2}; +\infty \right[$.

• Bilan.

L'ensemble des solutions de l'inéquation est $\left| S_2 = \right| -\infty; -\frac{3}{2} \left[\bigcup \right] \frac{11}{2}; +\infty \left[. \right]$

3. Équation (E_3) .

Le terme $\sqrt{2-x}$ est défini si et seulement si $2-x \ge 0$, donc si et seulement si $x \le 2$.

Si x est un réel dans $]-\infty$, -1[, alors $\sqrt{2-x} > 0$ et x+1 < 0. Donc l'équation n'a pas de solution sur $]-\infty$, -1[.

Soit $x \in [-1;2]$. Puisque $t \mapsto t^2$ est strictement croissante sur \mathbb{R}^+ , on a :

$$(E_3) \iff (2 - x = (x+1)^2)$$

$$\iff 2 - x = x^2 + 2x + 1$$

$$\iff x^2 + 3x - 1 = 0$$

$$\iff x = \frac{-3 + \sqrt{13}}{2} \text{ Ou } x = \frac{-3 - \sqrt{13}}{2}$$

Or, on a $\frac{-3-\sqrt{13}}{2} < \frac{-3}{2} < -1$ et 9 < 13 < 16 donc $3 < \sqrt{13} < 4$ d'où

$$0 = \frac{-3+3}{2} < \frac{-3+\sqrt{13}}{2} < \frac{-3+4}{2} = \frac{1}{2}.$$

Ainsi, l'ensemble des solutions de l'équation est $S_3 = \left\{ \frac{-3 + \sqrt{13}}{2} \right\}$.

4. Les termes de l'équation (E_4) sont bien définis si et seulement si $x \in \mathbb{R} \setminus \{0, -1\}$. Soit $x \in \mathbb{R} \setminus \{0, -1\}$.

$$\frac{1}{x} + \frac{1}{x+1} \leqslant 2 \iff \frac{x+1}{x(x+1)} + \frac{x}{x(x+1)} \leqslant \frac{2x(x+1)}{x(x+1)}$$

$$\iff \frac{x+1+x-2x(x+1)}{x(x+1)} \leqslant 0$$

$$\iff \frac{-2x^2+1}{x(x+1)} \leqslant 0$$

$$\iff -2 \times \frac{x^2 - \frac{1}{2}}{x(x+1)} \leqslant 0$$

On construit le tableau de signes de l'expression de gauche :

x	$-\infty$	-1	$\frac{-1}{\sqrt{2}}$	0	$\frac{1}{\sqrt{2}}$	$+\infty$
$x^2 - \frac{1}{2}$		+	0	_	0 +	
x(x+1)	+	0	_	0	+	
$-2 \times \frac{x^2 - \frac{1}{2}}{x(x+1)}$	_	+	о –	+	0 -	

On en conclut que l'ensemble des solutions de (E_4) est :

$$\boxed{\mathcal{S}_4 = \left] - \infty; -1 \right[\bigcup \left[\frac{-1}{\sqrt{2}}; 0 \right] \bigcup \left[\frac{1}{\sqrt{2}}; +\infty \right[.]}$$

Exercice 4 – Soit f une fonction réelle définie sur \mathbb{R} . On procède par analyse-synthèse.

Analyse: On suppose que f = g + h avec g une fonction définie sur \mathbb{R} et qui s'annule en 0, et h une fonction de la forme $x \longmapsto a e^x$ avec $a \in \mathbb{R}$.

Alors, pour tout $x \in \mathbb{R}$, $f(x) = g(x) + ae^x$.

En particulier, pour x = 0, et par hypothèse sur g, on a : f(0) = a.

Ainsi, h est la fonction $x \mapsto f(0) e^x$.

Et donc, g est la fonction $x \mapsto f(x) - f(0) e^x$.

Synthèse: Posons $g: x \mapsto f(x) - f(0) e^x$ et $h: x \mapsto f(0) e^x$. g et h sont toutes les deux définies sur \mathbb{R} . De plus,

- Pour tout $x \in \mathbb{R}$, $g(x) + h(x) = f(x) f(0) e^x + f(0) e^x = f(x)$.
- On a h qui est bien de la forme $h \mapsto ae^x$ pour un certain $a \in \mathbb{R}$.
- Enfin, $g(0) = f(0) f(0)e^0 = 0$.

Par analyse-synthèse, on a bien montré l'existence et l'unicité de la décomposition.

Exercice 5 -

1. Raisonnons par récurrence.

Pour tout entier naturel n, on considère la propriété P_n : « $u_n = 2^{n+2} - 3$ ».

Initialisation: $2^{0+2} - 3 = 4 - 3 = 1$ et $u_0 = 1$ donc $u_0 = 2^{0+2} - 3$ et donc P_0 est vraie.

Hérédité: Soit *n* un entier naturel fixé.

Supposons que la propriété P_n est vraie.

On a $u_{n+1} = 2u_n + 3 = 2(2^{n+2} - 3) + 3 = 2^{n+3} - 6 + 3 = 2^{(n+1)+2} - 3$ donc la propriété P_{n+1} est vraie.

Par récurrence : $\forall n \in \mathbb{N}, \ u_n = 2^{n+2} - 3.$

2. Raisonnons par récurrence.

Pour tout entier $n \ge 6$, on considère la propriété P_n : « $2^n \ge (n+2)^2$.»

Initialisation: $2^6 = 64$ et $(6+2)^2 = 64$ donc $2^6 \ge (6+2)^2$ donc P_6 est vraie.

Hérédité : Soit un entier $n \ge 6$ fixé.

On suppose que P_n est vraie, à savoir $2^n \ge (n+2)^2$. Alors

$$2^{n+1} = 2 \times 2^n \geqslant 2(n+2)^2$$
.

Or,
$$2(n+2)^2 - (n+3)^2 = 2(n^2 + 4n + 4) - (n^2 + 6n + 9) = n^2 + 2n - 1$$
.

Les deux racines de ce trinôme sont $n_1 = -1 - \sqrt{2}$ et $n_2 = -1 + \sqrt{2}$. Ces deux racines sont inférieures à 6 et le coefficient dominant du polynôme est positif, donc $n^2 + 2n - 1 \ge 0$. On obtient ainsi $2(n+2)^2 - (n+3)^2 \ge 0$ et donc $2(n+2)^2 \ge (n+3)^2$.

Finalement,

$$2^{n+1} \geqslant 2(n+2)^2 \geqslant ((n+1)+2)^2$$

et P_{n+1} est vraie.

Par récurrence :
$$\forall n \ge 6, 2^n \ge (n+2)^2$$

Exercice 6 – Raisonnons par récurrence double.

Pour tout entier naturel n, on note P_n la propriété : $u_n = 1 - (-2)^n$

- Initialisation : $u_0 = 0$ et $1 (-2)^0 = 1 1 = 0$ donc la propriété P_0 est vraie. $u_1 = 3$ et $1 (-2)^1 = 1 (-2) = 3$ donc la propriété P_1 est vraie.
- Hérédité: soit n un entier naturel fixé. On suppose que les propriétés P_n et P_{n+1} sont vraies c'est-à-dire $u_n = 1 (-2)^n$ et $u_{n+1} = 1 (-2)^{n+1}$. Montrons que P_{n+2} est vraie.

Par définition, $u_{n+2} = -u_{n+1} + 2u_n$ donc

$$u_{n+2} = -(1 - (-2)^{n+1}) + 2(1 - (-2)^n)$$

$$= -1 + (-2)^{n+1} + 2 - 2 \times (-2)^n$$

$$= 1 + (-2)^{n+1} + (-2)^{n+1}$$

$$= 1 + 2(-2)^{n+1}$$

$$= 1 - (-2)(-2)^{n+1}$$

$$= 1 - (-2)^{n+2}$$

ce qui signifie que la propriété P_{n+2} est vraie.

Par récurrence double, pour tout $n \in \mathbb{N}$, $u_n = 1 - (-2)^n$

Exercice 7 -

1. Soit $x \in \mathbb{R}$. tan est définie sur $\left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\}$ et

$$2x \in \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\} \iff x \in \left\{ \frac{\pi}{4} + k\frac{\pi}{2} \mid k \in \mathbb{Z} \right\}$$

Soit $x \in \mathbb{R} \setminus \left\{ \frac{\pi}{4} + k \frac{\pi}{2} \mid k \in \mathbb{Z} \right\}$.

$$\tan(2x) = 1 \iff \exists k \in \mathbb{Z}, \ 2x = \frac{\pi}{4} + k\pi$$
$$\iff \exists k \in \mathbb{Z}, \ x = \frac{\pi}{8} + k\frac{\pi}{2}$$

L'ensemble des solutions est $\left\{ \frac{\pi}{8} + k \frac{\pi}{2} \mid k \in \mathbb{Z} \right\}$

2. Les termes de l'équation sont bien définis pour tout $x \in \mathbb{R}$. Soit $x \in \mathbb{R}$.

$$\sin(x + \frac{3\pi}{4}) = \cos(x) \iff \sin(x + \frac{3\pi}{4}) = \sin(\frac{\pi}{2} - x)$$

$$\iff \exists k \in \mathbb{Z}, \ x + \frac{3\pi}{4} = \frac{\pi}{2} - x + 2k\pi$$
ou $x + \frac{3\pi}{4} = \pi - (\frac{\pi}{2} - x) + 2k\pi$

$$\iff \exists k \in \mathbb{Z}, \ x = \frac{-\pi}{8} + k\pi \text{ ou } \frac{\pi}{4} = 2k\pi$$

Comme $\frac{\pi}{4}$ n'est jamais égal à $2k\pi$ quelque soit k entier,

l'ensemble des solutions est
$$\left\{\frac{-\pi}{8} + k\pi \mid k \in \mathbb{Z}\right\}$$
.

3. Les termes de l'équation sont bien définis pour tout $x \in \mathbb{R}$. Soit $x \in \mathbb{R}$. On factorise par $\sqrt{1^2 + 1^2}$, soit $\sqrt{2}$.

$$\sin(x) + \cos(x) = \sqrt{\frac{3}{2}} \iff \sqrt{2} \left(\frac{1}{\sqrt{2}} \cos(x) + \frac{1}{\sqrt{2}} \sin(x) \right) = \sqrt{\frac{3}{2}}$$

On cherche alors un angle θ réel ayant pour sinus et pour cosinus $\frac{1}{\sqrt{2}}$. $\theta = \frac{\pi}{4}$ convient.

$$\sin(x) + \cos(x) = \sqrt{\frac{3}{2}} \iff \left(\cos\left(\frac{\pi}{4}\right)\cos(x) + \sin\left(\frac{\pi}{4}\right)\sin(x)\right) = \frac{\sqrt{3}}{2}$$

$$\iff \cos\left(x - \frac{\pi}{4}\right) = \frac{\sqrt{3}}{2}$$

$$\iff \exists k \in \mathbb{Z}, \ x - \frac{\pi}{4} = \frac{\pi}{6} + 2k\pi$$

$$\text{ou } x - \frac{\pi}{4} = \frac{-\pi}{6} + 2k\pi$$

$$\iff \exists k \in \mathbb{Z}, \ x = \frac{5\pi}{12} + 2k\pi \text{ ou } x = \frac{\pi}{12} + 2k\pi$$

l'ensemble des solutions est
$$\left\{ \frac{5\pi}{12} + 2k\pi \mid k \in \mathbb{Z} \right\} \cup \left\{ \frac{\pi}{12} + 2k\pi \mid k \in \mathbb{Z} \right\}.$$

Exercice 8 -

1. (a) En utilisant les formules $\cos(2\theta) = 1 - 2\sin^2(\theta)$ et $\cos^2(\theta) = 1 - \sin^2(\theta)$, on obtient

$$\Delta = 4\cos^{2}(\theta) - 4(2\cos(2\theta) - 1)$$

$$= 4(1 - \sin^{2}(\theta)) - 4(2(1 - 2\sin^{2}(\theta)) - 1)$$

$$= 4 - 4\sin^{2}(\theta) - 4 + 16\sin^{2}(\theta)$$

$$= 12\sin^{2}(\theta).$$

On a bien : $\Delta = 12 \sin^2(\theta)$

- (b) Si θ peut s'écrire $\theta = k\pi$ pour un certain $k \in \mathbb{Z}$, alors $\sin(\theta) = 0$ et $\Delta = 0$, ce qui implique que l'équation (*E*) n'a qu'une seule solution (qui est réelle).
 - Sinon, on a $sin(\theta) \neq 0$ et donc $\Delta > 0$, et dans ce cas l'équation (*E*) possède deux solutions réelles distinctes.
- 2. Soit $k \in \mathbb{Z}$. Posons $\theta = k\pi$. L'unique solution de (E) est alors $\cos(\theta)$. Par conséquent,
 - si $\theta = k\pi$ où k est un entier pair, l'unique solution de (E) est 1,
 - si $\theta = k\pi$ où k est un entier impair, l'unique solution de (E) est -1.
- 3. (a) On a $\sqrt{\Delta} = 2\sqrt{3}|\sin(\theta)|$ et $\{\sqrt{\Delta}, -\sqrt{\Delta}\} = \{2\sqrt{3}\sin(\theta), -2\sqrt{3}\sin(\theta)\}$. Ainsi, l'on obtient avec $\cos(a)\cos(b) + \sin(a)\sin(b) = \cos(a-b) = \cos(b-a)$ et $\cos(a)\cos(b) \sin(a)\sin(b) = \cos(a+b)$:

$$x_1 = \frac{2\cos(\theta) + 2\sqrt{3}\sin(\theta)}{2} = 2\left(\frac{1}{2}\cos(\theta) + \frac{\sqrt{3}}{2}\sin(\theta)\right) = 2\cos\left(\theta - \frac{\pi}{3}\right)$$
et
$$x_2 = \frac{2\cos(\theta) - 2\sqrt{3}\sin(\theta)}{2} = 2\left(\frac{1}{2}\cos(\theta) - \frac{\sqrt{3}}{2}\sin(\theta)\right) = 2\cos\left(\theta + \frac{\pi}{3}\right).$$
Les deux solutions x_1 et x_2 de l'équation (E) sont $x_1 = 2\cos\left(\theta - \frac{\pi}{3}\right)$ et $x_2 = 2\cos\left(\theta + \frac{\pi}{3}\right)$.

(b) On résout le problème : $x_1 = \sqrt{2}$ ou $x_2 = \sqrt{2}$. On a

$$x_{1} = \sqrt{2} \iff \cos\left(\theta - \frac{\pi}{3}\right) = \frac{\sqrt{2}}{2}$$

$$\iff \exists k \in \mathbb{Z}, \ \theta - \frac{\pi}{3} = \frac{\pi}{4} + 2k\pi \quad \text{ou} \quad \theta - \frac{\pi}{3} = -\frac{\pi}{4} + 2k\pi$$

$$\iff \exists k \in \mathbb{Z}, \ \theta = \frac{7\pi}{12} + 2k\pi \quad \text{ou} \quad \theta = \frac{\pi}{12} + 2k\pi$$

et
$$x_2 = \sqrt{2} \iff \cos\left(\theta + \frac{\pi}{3}\right) = \frac{\sqrt{2}}{2}$$

 $\iff \exists k \in \mathbb{Z}, \ \theta + \frac{\pi}{3} = \frac{\pi}{4} + 2k\pi \text{ ou } \theta + \frac{\pi}{3} = -\frac{\pi}{4} + 2k\pi$
 $\iff \exists k \in \mathbb{Z}, \ \theta = -\frac{\pi}{12} + 2k\pi \text{ ou } \theta = -\frac{7\pi}{12} + 2k\pi.$

Le nombre $\sqrt{2}$ est solution de (E) si et seulement si θ appartient à

$$\left\{\frac{\pi}{12} + 2k\pi, -\frac{\pi}{12} + 2k\pi, \frac{7\pi}{12} + 2k\pi, -\frac{7\pi}{12} + 2k\pi \mid k \in \mathbb{Z}\right\}.$$

Exercice 9 – Partie I

- 1. Méthode 1 : calcul de $\cos \frac{\pi}{8}$
 - (a) Soit $x \in \mathbb{R}$. On a

$$\cos(2x) = 2\cos^2(x) - 1.$$

(b) En prenant $x = \frac{\pi}{8}$ dans la question 1, on obtient

$$\cos\left(\frac{\pi}{4}\right) = 2\cos^2\left(\frac{\pi}{8}\right) - 1 \iff \cos^2\left(\frac{\pi}{8}\right) = \frac{1 + \cos\left(\frac{\pi}{4}\right)}{2}$$

Or $0 \le \frac{\pi}{8} \le \frac{\pi}{2}$, donc $\cos\left(\frac{\pi}{8}\right) \ge 0$. Par suite,

$$\cos\left(\frac{\pi}{8}\right) = \sqrt{\frac{1+\cos\left(\frac{\pi}{4}\right)}{2}} = \sqrt{\frac{1+\frac{\sqrt{2}}{2}}{2}}.$$

Conclusion,

$$\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$$

- 2. Méthode 2 : calcul de $\cos \frac{\pi}{8}$.
 - (a) Soit $x \in \mathbb{R}$. On a les égalités entre réels suivantes :

$$\cos(4x) = 2\cos^2(2x) - 1 = 2(2\cos^2(x) - 1)^2 - 1$$
$$= 2(4\cos^4(x) - 4\cos^2(x) + 1) - 1$$
$$= 8\cos^4(x) - 8\cos^2(x) + 1$$

Conclusion,

$$\cos(4x) = 8\cos^4(x) - 8\cos^2(x) + 1$$

(b) En prenant $x = \frac{\pi}{8}$ dans la question précédente, on obtient

$$\cos\left(\frac{\pi}{2}\right) = 8\cos^4\left(\frac{\pi}{8}\right) - 8\cos^2\left(\frac{\pi}{8}\right) + 1$$

Donc en posant $X = \cos\left(\frac{\pi}{8}\right)$, on a

$$0 = 8X^4 - 8X^2 + 1.$$

Conclusion, $\cos\left(\frac{\pi}{8}\right)$ est une solution de l'équation $8X^4 - 8X^2 + 1 = 0$ d'inconnue $X \in \mathbb{R}$.

(c) Soit Δ le discriminant de $8u^2 - 8u + 1$. On a

$$\Delta = 64 - 32 = 32 = 2 \times 16$$
.

Par conséquent les racines associées sont

$$u_1 = \frac{8+4\sqrt{2}}{16} = \frac{2+\sqrt{2}}{4}$$
 et $u_2 = \frac{8-4\sqrt{2}}{16} = \frac{2-\sqrt{2}}{4}$.

Conclusion, les racines de $8u^2 - 8u + 1$ sont $u_1 = \frac{2 + \sqrt{2}}{4}$ et $u_2 = \frac{2 - \sqrt{2}}{4}$.

(d) D'après la question (b), on sait que $u = X^2 = \cos^2\left(\frac{\pi}{8}\right)$ est une solution de l'équation $8u^2 - 8u + 1$. Donc d'après la question (c),

$$\cos^2\left(\frac{\pi}{8}\right) = \frac{2+\sqrt{2}}{4}$$
 OU $\cos^2\left(\frac{\pi}{8}\right) = \frac{2-\sqrt{2}}{4}$

Or on note que

$$0 \leqslant \frac{2 - \sqrt{2}}{4} = \frac{1}{2} - \frac{\sqrt{2}}{4} < \frac{1}{2} = \left(\frac{\sqrt{2}}{2}\right)^2 = \cos^2\left(\frac{\pi}{4}\right).$$

et $0 \leqslant \frac{\pi}{8} < \frac{\pi}{4}$ donc $0 \leqslant \cos\left(\frac{\pi}{4}\right) < \cos\left(\frac{\pi}{8}\right)$ puis, par la stricte croissance de la fonction carrée sur \mathbb{R}_+ , $0 \leqslant \cos^2\left(\frac{\pi}{4}\right) < \cos^2\left(\frac{\pi}{8}\right)$. Ainsi

$$\frac{2-\sqrt{2}}{4} < \cos^2\left(\frac{\pi}{4}\right) < \cos^2\left(\frac{\pi}{8}\right).$$

Comme $\cos^2\left(\frac{\pi}{8}\right) \neq \frac{2-\sqrt{2}}{4}$, on en déduit nécessairement que

$$\cos^2\left(\frac{\pi}{8}\right) = \frac{2+\sqrt{2}}{4}$$

Or on sait que $\cos\left(\frac{\pi}{8}\right) \geqslant 0$. Conclusion,

$$\cos\left(\frac{\pi}{8}\right) = \frac{\sqrt{2+\sqrt{2}}}{2}$$

3. (a) Par la formule fondamentale et la question précédente, on a

$$\sin^2\left(\frac{\pi}{8}\right) = 1 - \cos^2\left(\frac{\pi}{8}\right) = 1 - \left(\frac{\sqrt{2+\sqrt{2}}}{2}\right)^2 = 1 - \frac{2+\sqrt{2}}{4} = \frac{2-\sqrt{2}}{4}.$$

Or $0 \le \frac{\pi}{8} \le \frac{\pi}{2}$. Donc $\sin\left(\frac{\pi}{8}\right) \ge 0$. Par conséquent,

$$\sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2-\sqrt{2}}}{2}$$

De là, on en déduit également, avec la valeur du cosinus précédemment calculée, que

$$\tan\left(\frac{\pi}{8}\right) = \frac{\sin\left(\frac{\pi}{8}\right)}{\cos\left(\frac{\pi}{8}\right)} = \frac{\frac{\sqrt{2-\sqrt{2}}}{2}}{\frac{\sqrt{2+\sqrt{2}}}{2}} = \sqrt{\frac{2-\sqrt{2}}{2+\sqrt{2}}} = \sqrt{\frac{(2-\sqrt{2})(2-\sqrt{2})}{(2+\sqrt{2})(2-\sqrt{2})}}$$
$$= \sqrt{\frac{4-4\sqrt{2}+2}{4-2}}$$
$$= \sqrt{3-2\sqrt{2}}$$

Or on note que $3 - 2\sqrt{2} = 1 - 2\sqrt{2} + 2 = (\sqrt{2} - 1)^2$. Donc

$$\tan\left(\frac{\pi}{\Omega}\right) = \sqrt{(\sqrt{2}-1)^2} = |\sqrt{2}-1| = \sqrt{2}-1 \quad \cot\sqrt{2}-1 > 0$$

Conclusion,

$$\tan\left(\frac{\pi}{8}\right) = \sqrt{2} - 1$$

(b) On observe que $\frac{3\pi}{8} = \frac{\pi}{2} - \frac{\pi}{8}$. Donc par ce qui précède,

$$\cos\left(\frac{3\pi}{8}\right) = \cos\left(\frac{\pi}{2} - \frac{\pi}{8}\right) = \sin\left(\frac{\pi}{8}\right) = \frac{\sqrt{2 - \sqrt{2}}}{2}.$$

De plus $\frac{5\pi}{8} = \frac{\pi}{2} + \frac{\pi}{8}$ et donc de même

$$\cos\left(\frac{5\pi}{8}\right) = \cos\left(\frac{\pi}{2} + \frac{\pi}{8}\right) = -\sin\left(\frac{\pi}{8}\right) = -\frac{\sqrt{2 - \sqrt{2}}}{2}$$

Enfin, on observe que $\frac{371\pi}{8} = \frac{(8 \times 46 + 3)\pi}{8} = 23 \times 2\pi + \frac{3\pi}{8}$. La fonction cosinus étant 2π -périodique, on a

$$\cos\left(\frac{371\pi}{8}\right) = \cos\left(23 \times 2\pi + \frac{3\pi}{8}\right) = \cos\left(\frac{3\pi}{8}\right)$$

et par ce qui précède, $\cos\left(\frac{371\pi}{8}\right) = \frac{\sqrt{2-\sqrt{2}}}{2}$. Conclusion,

$$\cos\left(\frac{3\pi}{8}\right) = \cos\left(\frac{371\pi}{8}\right) = \frac{\sqrt{2-\sqrt{2}}}{2} \quad \text{et} \quad \cos\left(\frac{5\pi}{8}\right) = -\frac{\sqrt{2-\sqrt{2}}}{2}$$

4. (a) Soit $\theta \in \mathbb{R}$. Par des formules de linéarisation, on a

$$\sin^{4}(\theta) = (\sin^{2}(\theta))^{2} = \left(\frac{1 - \cos(2\theta)}{2}\right)^{2}$$

$$= \frac{1 - 2\cos(2\theta) + \cos^{2}(2\theta)}{4}$$

$$= \frac{1 - 2\cos(2\theta) + \frac{1 + \cos(4\theta)}{2}}{4}$$

$$= \frac{3 - 4\cos(2\theta) + \cos(4\theta)}{8}$$

Conclusion, on a bien montré que

$$\sin^4(\theta) = \frac{1}{8}\cos(4\theta) - \frac{1}{2}\cos(2\theta) + \frac{3}{8}$$

(b) D'après la question précédente avec $\theta = \frac{\pi}{8}$, on a

$$\sin^4\left(\frac{\pi}{8}\right) = \frac{1}{8}\cos\left(\frac{\pi}{2}\right) - \frac{1}{2}\cos\left(\frac{\pi}{4}\right) + \frac{3}{8}$$
$$= 0 - \frac{\sqrt{2}}{4} + \frac{3}{8}$$

Donc

$$\sin^4\left(\frac{\pi}{8}\right) = \frac{3 - 2\sqrt{2}}{8}$$

Vérifions que ce résultat est compatible avec la valeur de $\sin^4\left(\frac{\pi}{8}\right)$ trouvée à la question 3.(a):

$$\sin^4\left(\frac{\pi}{8}\right) = \left(\frac{\sqrt{2-\sqrt{2}}}{2}\right)^4 = \left(\frac{2-\sqrt{2}}{4}\right)^2 = \frac{4-4\sqrt{2}+2}{16} = \frac{3-2\sqrt{2}}{8}$$

Ce calcul est donc bien cohérent avec la valeur précédemment trouvée.

Partie II

(a) Soit $x \in \mathbb{R}$. On a les égalités entre réels suivants : 5.

$$\sqrt{2+\sqrt{2}}\cos(3x) - \sqrt{2-\sqrt{2}}\sin(3x) = 2\left(\frac{\sqrt{2+\sqrt{2}}}{2}\cos(3x) - \frac{\sqrt{2-\sqrt{2}}}{2}\sin(3x)\right).$$

Donc d'après les calculs de la partie I,

$$\sqrt{2+\sqrt{2}\cos(3x)} - \sqrt{2-\sqrt{2}\sin(3x)} = 2\left(\cos\left(\frac{\pi}{8}\right)\cos(3x) - \sin\left(\frac{\pi}{8}\right)\sin(3x)\right)$$
$$= 2\cos\left(3x + \frac{\pi}{8}\right)$$

(b) Soit $x \in \mathbb{R}$. D'après la question précédente, on a les équivalences suivantes :

$$(E) \iff 2\cos\left(3x + \frac{\pi}{8}\right) = 2\cos\left(2x + \frac{\pi}{2}\right)$$

$$\iff \cos\left(3x + \frac{\pi}{8}\right) = \cos\left(2x + \frac{\pi}{2}\right)$$

$$\iff 3x + \frac{\pi}{8} = 2x + \frac{\pi}{2}[2\pi] \quad \text{OU} \quad 3x + \frac{\pi}{8} = -2x - \frac{\pi}{2}[2\pi]$$

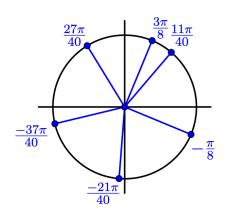
$$\iff x \equiv \frac{3\pi}{8}[2\pi] \quad \text{OU} \quad 5x \equiv -\frac{5\pi}{8}[2\pi]$$

$$\iff x \equiv \frac{3\pi}{8}[2\pi] \quad \text{OU} \quad x \equiv -\frac{\pi}{8}\left[\frac{2\pi}{5}\right].$$

Conclusion, pour tout $x \in \mathbb{R}$, on a

$$(E) \iff x \in \left\{ \frac{3\pi}{8} + 2k\pi \middle| k \in \mathbb{Z} \right\} \cup \left\{ -\frac{\pi}{8} + \frac{2k\pi}{5} \middle| k \in \mathbb{Z} \right\}.$$

(c) On observe que $\frac{\pi}{4} = \frac{2\pi}{8} \leqslant \frac{3\pi}{8} \leqslant \frac{4\pi}{8} = \frac{\pi}{2} \text{ et } -\frac{\pi}{4} \leqslant -\frac{\pi}{8} \leqslant 0.$ Puis si $k = 1, -\frac{\pi}{8} + \frac{2k\pi}{5} = \frac{-5\pi + 16\pi}{40} = \frac{11\pi}{40} = \frac{\pi}{4} + \frac{\pi}{40}$ (légèrement supérieur à $\frac{\pi}{4}$), si $k = 2, -\frac{\pi}{8} + \frac{2k\pi}{5} = \frac{11\pi + 16\pi}{40} = \frac{27\pi}{40} \in \left[\frac{\pi}{2}; \frac{3\pi}{40} \right],$ si $k = -1, -\frac{\pi}{8} + \frac{2k\pi}{5} = \frac{-5\pi - 16\pi}{40} = -\frac{21\pi}{40} \in \left[-\frac{\pi}{2}; -\frac{3\pi}{4} \right],$ si k = -2, $\frac{\pi}{10} + \frac{2k\pi}{5} = \frac{-21\pi - 16}{40} = -\frac{37\pi}{40} \in \left[-\frac{3\pi}{4}; -\pi \right].$ D'où la figure suivante :



Et l'ensemble des solutions de (E) dans l'intervalle $[-\pi;\pi]$ est

$$S = \left\{ \frac{-37\pi}{40}; \frac{-21\pi}{40}; -\frac{\pi}{8}; \frac{11\pi}{40}; \frac{3\pi}{8}; \frac{27\pi}{40} \right\}.$$

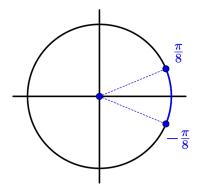
6. Soit $x \in \mathbb{R}$. On a l'équivalence suivante :

$$2\cos(x) > \sqrt{2 + \sqrt{2}} \iff \cos(x) > \frac{\sqrt{2 + \sqrt{2}}}{2}$$

Donc d'après la partie 1,

$$2\cos(x) > \sqrt{2 + \sqrt{2}} \quad \Longleftrightarrow \quad \cos(x) > \cos\left(\frac{\pi}{8}\right)$$

On observe donc que cela à correspond à la partie bleue suivante du cercle trigonométrique :



Par conséquent,

$$2\cos(x) > \sqrt{2+\sqrt{2}} \quad \Longleftrightarrow \quad \exists k \in \mathbb{Z}, \quad -\frac{\pi}{8} + 2k\pi \leqslant x \leqslant \frac{\pi}{8} + 2k\pi.$$

Conclusion,

$$2\cos(x) > \sqrt{2+\sqrt{2}} \quad \Longleftrightarrow \quad x \in \bigcup_{k \in \mathbb{Z}} \left[-\frac{\pi}{8} + 2k\pi; \frac{\pi}{8} + 2k\pi \right].$$

Exercice 10 -

1. (a) Soient x et y des réels. Alors, $f_1(x) = x$ et $f_1(y) = y$, donc

$$\left|f_1(x)+f_1(y)\right|=\left|x+y\right|.$$

Donc f_1 vérifie bien (E).

(b) Soient \overline{x} et \overline{y} des réels. Alors, $f_2(x) = -x$ et $f_2(y) = -y$, donc

$$|f_2(x) + f_2(y)| = |-x - y| = |-(x + y)| = |x + y|.$$

Donc f_2 vérifie bien (E).

2. Soit $x \in \mathbb{R}$. Alors,

$$f(x) = |x| \iff (f(x) = x \text{ OU } f(x) = -x).$$

D'où,
$$(\forall x \in \mathbb{R}, |f(x)| = |x|) \iff (\forall x \in \mathbb{R}, [f(x) = x \text{ Ou } f(x) = -x]).$$

3. (a) Pour x = 0 et y = 0, on obtient :

$$|f(0) + f(0)| = |0 + 0|$$
$$|2f(0)| = |0|$$
$$2|f(0)| = 0$$

Donc
$$f(0) = 0$$
.

(b) Soit $x \in \mathbb{R}$. Alors, comme f(0) = 0,

$$|f(x) + f(0)| = |x + 0|$$
$$|f(x) + 0| = |x|$$
$$|f(x)| = |x|$$

Ainsi, $\forall x \in \mathbb{R}, |f(x)| = |x|$.

(c) i. La négation demandée est

$$\exists x \in \mathbb{R}, f(x) \neq x$$
 Et $\exists x \in \mathbb{R}, f(x) \neq -x$.

ii. Comme f vérifie $(\forall x \in \mathbb{R}, |f(x)| = |x|)$ (question 3.b), en utilisant la question 2, on en déduit que f vérifie $(\forall x \in \mathbb{R}, [f(x) = x \text{ Ou } f(x) = -x])$

Supposons que $(\exists x \in \mathbb{R}, f(x) \neq x)$ Et $(\exists x \in \mathbb{R}, f(x) \neq -x)$.

On note x un réel tel que $f(x) \neq x$ et y un réel tel que $f(y) \neq -y$.

Comme f(x) = x Ou f(x) = -x et $f(x) \neq x$, on obtient que f(x) = -x.

De même, f(y) = y Ou f(y) = -y et $f(y) \neq -y$, donc f(y) = y.

Comme f vérifie (E), on a |f(x) + f(y)| = |x + y|. Donc |-x + y| = |x + y|. Deux nombres ont la même valeur absolue si et seulement si ils sont égaux ou opposés.

- Si -x + y = x + y, alors -x = x donc x = 0. Donc f(0) = 0 (par quest. 3.a). Or $f(x) \neq x$, donc ceci fournit une contradiction.
- Si -x + y = -(x + y), alors y = -y donc y = 0. Donc f(0) = 0 (par quest. 3.a). Or $f(y) \neq -y$, donc ceci fournit une contradiction.

On en déduit que notre hypothèse est fausse, et donc que sa négation est vraie, c'est-à-dire que

$$\left(\forall x \in \mathbb{R}, f(x) = x\right) \text{ Ou } \left(\forall x \in \mathbb{R}, f(x) = -x\right).$$

Autrement dit, f est forcément la fonction f_1 ou la fonction f_2 .

4. On procède par analyse synthèse.

La question 3 réalise l'analyse et montre que les fonctions f_1 et f_2 sont les seules fonctions candidates à vérifier (E).

La synthèse a été réalisée dans la question 1, où l'on a montré que f_1 et f_2 vérifient (E).

Conclusion : L'ensemble des fonctions vérifiant (E) est $\{f_1, f_2\}$.