DEVOIR SURVEILLÉ 1

Durée: 4h

Les documents, la calculatrice et tout matériel éléctronique sont interdits.

- 1. Rédigez sur une copie double en laissant une marge suffisante au correcteur.
- 2. Numérotez les exos, les questions traitées (et vos copies en fin d'épreuve).
- 3. Encadrez ou soulignez vos résultats.
- 4. Soignez la rédaction!!
- 5. Pour répondre à une question, vous pouvez admettre les résultats d'une question précédente non résolue, du moment que ce soit clairement indiqué sur votre copie.

Ce sujet, comportant 3 pages, est constitué de 10 exercices. Bon courage!

Exercice 1 – Pour chacune des assertions qui suivent :

- 1. Écrire la négation.
- 2. Déterminer si l'assertion est vraie ou fausse. Si l'assertion est vraie, on en fera la démonstration. Si l'assertion est fausse, on démontrera que la négation est vraie.

Exercice 2 – Soit $n \in \mathbb{N}^*$. On considère l'assertion suivante :

« Si l'entier $n^2 - 1$ n'est pas divisible par 4, alors l'entier n est pair. »

- 1. Écrire la contraposée de cette assertion.
- 2. Montrer que cette contraposée est vraie.
- 3. Que conclure quant à la valeur de vérité de l'assertion de départ? (expliquer sommairement)

Exercice 3 – Résoudre les équations ou inéquations d'inconnue réelle *x* suivantes :

(E₁)
$$|x-1| = |3-x|$$
 (E₂) $|x-1| + |3-x| > 7$
(E₃) $\sqrt{2-x} = x+1$ (E₄) $\frac{1}{x} + \frac{1}{x+1} \le 2$.

Exercice 4 – Montrer que toute fonction réelle f définie sur \mathbb{R} peut s'écrire de manière unique sous la forme f = g + h où g est une fonction définie sur \mathbb{R} et qui s'annule en 0 et h est une fonction définie sur \mathbb{R} telle qu'il existe un réel a tel que pour tout x réel, $h(x) = a \exp(x)$.

Exercice 5 -

- 1. On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = 2u_n + 3$. Démontrer que pour tout $n \in \mathbb{N}$, on a : $u_n = 2^{n+2} 3$.
- 2. Démontrer que pour tout entier $n \ge 6$, on a $2^n \ge (n+2)^2$.

Exercice 6 – On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 0$$
, $u_1 = 3$ et $\forall n \in \mathbb{N}$, $u_{n+2} = -u_{n+1} + 2u_n$.

Démontrer que : $\forall n \in \mathbb{N}, u_n = 1 - (-2)^n$.

Exercice 7 – Résoudre les équations suivantes, d'inconnue *x* réelle, en commençant par déterminer le domaine de définition de chaque équation.

- 1. tan(2x) = 1.
- $2. \sin\left(x + \frac{3\pi}{4}\right) = \cos(x).$
- 3. $\sin(x) + \cos(x) = \sqrt{\frac{3}{2}}$.

Exercice 8 – Soit θ un paramètre réel. On considère l'équation du second degré suivante, d'inconnue réelle x:

(E)
$$x^2 - 2\cos(\theta)x + (2\cos(2\theta) - 1) = 0.$$

- 1. (a) Montrer que le discriminant Δ de cette équation vaut $12\sin^2(\theta)$.
 - (b) Discuter suivant les valeurs de θ le nombre de solutions réelles de (E).
- 2. Soit $\theta \in \mathbb{R}$ tel que (*E*) ne possède qu'une seule solution. Déterminer cette solution.

On suppose désormais que θ est choisi de sorte que l'équation (E) possède deux solutions réelles.

- 3. (a) Donner en fonction de θ les deux solutions x_1 et x_2 de l'équation (E). On pourra écrire x_1 et x_2 sous la forme $a\cos(\theta + \varphi)$ où a et φ sont réels.
 - (b) Déterminer pour quelles valeurs du réel θ le nombre $\sqrt{2}$ est une solution de l'équation (E).

Exercice 9 - Partie I

- 1. Méthode 1 : calcul de $\cos \frac{\pi}{8}$.
 - (a) Soit $x \in \mathbb{R}$. Exprimer $\cos(2x)$ en fonction de $\cos(x)$ uniquement.
 - (b) En s'aidant de la valeur de $\cos\left(\frac{\pi}{4}\right)$, en déduire $\cos\left(\frac{\pi}{8}\right)$.
- 2. Méthode 2 : calcul de $\cos \frac{\pi}{8}$.
 - (a) Soit $x \in \mathbb{R}$. Exprimer $\cos(4x)$ en fonction de $\cos(x)$ uniquement.
 - (b) En déduire que $\cos\left(\frac{\pi}{8}\right)$ est une solution de l'équation :

$$8X^4 - 8X^2 + 1 = 0$$
 d'inconnue $X \in \mathbb{R}$

- (c) Déterminer les racines du trinôme $8u^2 8u + 1$ de la variable $u \in \mathbb{R}$.
- (d) En déduire la valeur de $\cos\left(\frac{\pi}{8}\right)$ en justifiant avec soin.
- 3. (a) Déterminer les valeurs de $\sin\left(\frac{\pi}{8}\right)$ et $\tan\left(\frac{\pi}{8}\right)$.

- (b) En déduire les valeurs de $\cos\left(\frac{3\pi}{8}\right)$, $\cos\left(\frac{5\pi}{8}\right)$ et $\cos\left(\frac{371\pi}{8}\right)$.
- 4. (a) Soit $\theta \in \mathbb{R}$. Montrer que:

$$\sin^4(\theta) = \frac{1}{8}\cos(4\theta) - \frac{1}{2}\cos(2\theta) + \frac{3}{8}$$

(b) En déduire $\sin^4\left(\frac{\pi}{8}\right)$, puis justifier avec soin que la valeur trouvée est compatible avec un résultat trouvé en 3.(a).

Partie II

5. (a) Montrer que pour tout $x \in \mathbb{R}$:

$$\sqrt{2+\sqrt{2}\cos(3x)} - \sqrt{2-\sqrt{2}\sin(3x)} = 2\cos\left(3x + \frac{\pi}{8}\right)$$

(b) En déduire la résolution de l'équation (E) suivante d'inconnue $x \in \mathbb{R}$:

$$\sqrt{2+\sqrt{2}\cos(3x)} - \sqrt{2-\sqrt{2}\sin(3x)} = 2\cos\left(2x + \frac{\pi}{2}\right)$$

- (c) Représenter les solutions de l'équation (E) sur un cercle trigonométrique, puis préciser celles qui appartiennent à l'intervalle $[-\pi,\pi]$.
- 6. Résoudre l'inéquation $2\cos(x) > \sqrt{2 + \sqrt{2}}$ d'inconnue $x \in \mathbb{R}$. On fera une figure soignée pour justifier le résultat.

Exercice 10 – Le but de cet exercice est de déterminer toutes les fonctions f de \mathbb{R} dans \mathbb{R} vérifiant :

$$\forall x, y \in \mathbb{R}, |f(x) + f(y)| = |x + y|.$$
 (E)

- 1. (a) On définit $f_1: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x \end{array}$. Montrer que f_1 vérifie (E).
 - (b) On définit $f_2: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & -x \end{array}$. Montrer que f_2 vérifie (E).
- 2. Soit f une fonction de \mathbb{R} dans \mathbb{R} . Montrer que

$$(\forall x \in \mathbb{R}, |f(x)| = |x|) \iff (\forall x \in \mathbb{R}, [f(x) = x \text{ Ou } f(x) = -x]).$$

- 3. On suppose que f est une fonction de $\mathbb R$ dans $\mathbb R$ vérifiant (E).
 - (a) Montrer que f(0) = 0.
 - (b) Montrer que $\forall x \in \mathbb{R}, |f(x)| = |x|$.
 - (c) i. Écrire la négation de

$$(\forall x \in \mathbb{R}, f(x) = x) \text{ Ou } (\forall x \in \mathbb{R}, f(x) = -x).$$

ii. En raisonnant par l'absurde, montrer que

$$(\forall x \in \mathbb{R}, f(x) = x)$$
 Ou $(\forall x \in \mathbb{R}, f(x) = -x)$.

4. Conclure. On précisera bien le raisonnement utilisé.