DEVOIR MAISON 4

Deux possibilités pour ce DM:

- Traiter les exercices 1 et 2 (plus faciles).
- Traiter l'exercice 3 (plus difficile).

Exercice 1 – Soit $(u_n)_{n\in\mathbb{N}}$ une suite de nombres réels positifs ou nuls.

On suppose que $(u_n)_{n\in\mathbb{N}}$ est décroissante et que $\lim_{n\to+\infty}u_n=0$.

Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n (-1)^k u_k$.

- 1. Montrer que les suites $(S_{2n})_{n\in\mathbb{N}}$ et $(S_{2n+1})_{n\in\mathbb{N}}$ sont adjacentes.
- 2. Justifier que la suite $(S_n)_{n \in \mathbb{N}}$ est convergente.
- 3. On définit la suite $(T_n)_{n\in\mathbb{N}}$ par

$$\forall n \in \mathbb{N}, T_n = \sum_{k=0}^{n} (-1)^k (\ln(k+2) - \ln(k+1)).$$

Montrer que $(T_n)_{n\in\mathbb{N}}$ est convergente.

Exercice 2 – Soit r > 1 un réel. On considère les suites a et b définies par :

$$a_0 = 1$$
, $b_0 = r$ et $\forall n \in \mathbb{N}$, $a_{n+1} = \frac{2a_n b_n}{a_n + b_n}$, $b_{n+1} = \frac{a_n + b_n}{2}$.

- 1. Montrer que les suites a et b sont correctement définies et à termes strictement positifs.
- 2. Établir pour tout $n \in \mathbb{N}$ la relation : $b_{n+1} a_{n+1} = \frac{(b_n a_n)^2}{2(b_n + a_n)}$.
- 3. En déduire que pour tout $n \in \mathbb{N}$, $a_n \leq b_n$.
- 4. Étudier la monotonie des suites *a* et *b*.
- 5. Démontrer que les suites a et b convergent vers deux réels notés ℓ_a et ℓ_b . Pour cela, on pourra s'inspirer de la démonstration de la convergence de deux suites adjacentes.
- 6. En utilisant la définition de la suite b, démontrer que $\ell_a = \ell_b$. On notera désormais ℓ leur limite commune.
- 7. Démontrer que la suite $(a_n b_n)_{n \in \mathbb{N}}$ est une suite constante.
- 8. En déduire la valeur de ℓ .
- 9. (a) Justifier que pour tout $n \in \mathbb{N}$, $\frac{a_n b_n a_n^2}{a_n b_n + a_n^2} \leqslant \frac{r-1}{r+1}$.
 - (b) En déduire que pour tout $n \in \mathbb{N}$, $b_{n+1} a_{n+1} \leqslant \frac{(r-1)}{2(r+1)}(b_n a_n)$.
- 10. On suppose désormais que r = 2.
 - (a) Démontrer : $\forall n \in \mathbb{N}, \ 0 \leqslant b_n a_n \leqslant \frac{1}{6^n}$.
 - (b) Déterminer un entier n tel que a_n et b_n constituent un encadrement de $\sqrt{2}$ d'amplitude au plus 10^{-12} .
 - (c) BONUS : Écrire un algorithme permettant de calculer à l'aide des suites a et b un encadrement de $\sqrt{2}$ d'amplitude au plus 10^{-12} .

Exercice 3 – Dans cet exercice, on considère l'ensemble, noté S, des suites $(u_n)_{n\geqslant 0}$ à valeurs réelles et telles que

$$u_{n+1} = \frac{\exp\left(u_n\right)}{n+1}$$

pour tout entier $n \ge 0$.

Pour tout nombre réel x, on note u(x) la suite appartenant à S et dont le premier terme vaut x. On note également $u_n(x)$ le terme d'indice n de cette suite. Ainsi, $u_0(x) = x$ et $u_1(x) = \exp(x)$.

- 1. Démontrer que toute suite appartenant à S est strictement positive à partir du rang 1.
- 2. Soit $(u_n)_{n\geqslant 0}$ une suite appartenant à \mathcal{S} . Démontrer que s'il existe un rang $N\geqslant 2$ pour lequel $u_N\leqslant 1$, alors $(u_n)_{n\geqslant 0}$ converge vers 0.
- 3. Soit $(u_n)_{n\geqslant 0}$ une suite appartenant à S. Démontrer que si cette suite ne converge pas vers 0, alors elle diverge vers $+\infty$.

Ci-dessous, on note E_0 l'ensemble des réels x pour lesquels la suite u(x) converge vers 0, et E_{∞} l'ensemble des réels x pour lesquels u(x) diverge vers $+\infty$.

- 4. Démontrer que $0 \in E_0$.
- 5. (a) Démontrer, pour tout entier $n \ge 0$, que la fonction $x \mapsto u_n(x)$ est strictement croissante sur \mathbb{R} .
 - (b) En déduire que, si x est un élément de E_0 , alors l'intervalle $]-\infty,x]$ est inclus dans E_0 .
- 6. (a) Démontrer que la fonction $x \mapsto \exp(x) x(x+1)$ est strictement positive sur l'intervalle $[2, +\infty[$.
 - (b) Soit $(u_n)_{n\geqslant 0}$ une suite appartenant à S. Démontrer que, s'il existe un rang $N\geqslant 1$ pour lequel $u_N\geqslant N+1$, alors $(u_n)_{n\geqslant 0}$ diverge vers $+\infty$.
 - (c) Démontrer que $1 \in E_{\infty}$.
- 7. Démontrer que, si x est un élément de E_{∞} , alors l'intervalle [x, $+\infty$ [est inclus dans E_{∞} .

Nous allons maintenant démontrer qu'il existe un nombre réel δ tel que l'intervalle] $-\infty$, δ [est inclus dans E_0 et l'intervalle [δ , $+\infty$ [est inclus dans E_∞ .

8. On définit deux suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ de la façon suivante. Tout d'abord, on pose $a_0=0$ et $b_0=1$.

Puis, pour tout entier $n \ge 0$, on pose $a_{n+1} = \frac{a_n + b_n}{2}$ et $b_{n+1} = b_n$ si $\frac{a_n + b_n}{2} \in E_0$, et on pose $a_{n+1} = a_n$ et $b_{n+1} = \frac{a_n + b_n}{2}$ sinon.

- (a) Démontrer que les suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ sont convergentes et ont même limite.
- (b) Soit δ la limite commune aux suites $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$. Démontrer que l'intervalle] $-\infty$, δ [est inclus dans E_0 et l'intervalle] δ , $+\infty$ [est inclus dans E_∞ .
- 9. On pose $c_2 = \ln(\ln(2))$, $c_3 = \ln(\ln(2\ln(3\ln(3)))$ et $c_4 = \ln(\ln(2\ln(3\ln(4))))$, et plus généralement, pour tout entier $\ell \geqslant 2$, $c_\ell = \ln(\ln(2\ln(3\ln(\cdots\ln((\ell-1)\ln(\ell))...)))$. Démontrer que, pour tout entier $\ell \geqslant 2$, le nombre réel c_ℓ appartient à E_0 .
- 10. Démontrer que la suite $(c_\ell)_{\ell \geq 2}$ converge.
- 11. Démontrer que $\delta \in E_{\infty}$.