DEVOIR MAISON 3

Exercice 1

On note j le nombre complexe $j = \frac{-1 + i\sqrt{3}}{2}$.

- 1. (a) Écrire j sous forme exponentielle, donner le lien entre j^2 et \overline{j} , déterminer j^3 et calculer $1+j+j^2$.
 - (b) Calculer selon la valeur de l'entier $k \in \mathbb{N}$, la valeur de j^k . On pourra distinguer les cas suivant que k s'écrit 3p, 3p + 1 ou 3p + 2 où $p \in \mathbb{N}$.
- 2. On fixe $n \in \mathbb{N}$ et l'on note

$$S_0 = \sum_{\substack{k=0 \ k \equiv 0 \ [3]}}^{n} \binom{n}{k}, \qquad S_1 = \sum_{\substack{k=0 \ k \equiv 1 \ [3]}}^{n} \binom{n}{k} \qquad \text{et} \qquad S_2 = \sum_{\substack{k=0 \ k \equiv 2 \ [3]}}^{n} \binom{n}{k}$$

où, pour tout $a \in \{0, 1, 2\}$, l'écriture $k \equiv a$ [3] signifie qu'il existe un entier p tel que k = 3p + a, ou encore que le reste de la division euclidienne de k par 3 est a.

- (a) Calculer $S_0 + S_1 + S_2$.
- (b) En utilisant la formule du binôme, exprimer $(1+j)^n$ et $(1+j^2)^n$ en fonction de S_0 , S_1 et S_2 .
- (c) Démontrer l'égalité $(1+j)^n + (1+j^2)^n = 2\cos(n\pi/3)$ et calculer de même $(1+j)^n (1+j^2)^n$.
- (d) À partir du système obtenu à l'aide des questions 2a et 2b, en déduire S_0 , S_1 et S_2 . Les expressions de S_0 , S_1 et S_2 ne devront contenir **aucun** nombre complexe.

Exercice 2

Soit *p* un nombre réel strictement supérieur à 1. On considère la fonction

$$g_p: \mathbb{R} \longrightarrow \mathbb{R},$$
 $x \longmapsto \arctan(px) - x$

On note α_p le nombre réel $\frac{\sqrt{p-1}}{p}$. Les parties du problème ne sont pas indépendantes.

Partie I : Étude de g_p

- 1. Quelle est la parité de g_p ?
- 2. Calculer les limites en $+\infty$ et $-\infty$ de g_p .
- 3. Justifier que g_p est dérivable et calculer $g_p'(x)$ pour tout $x \in \mathbb{R}$.
- 4. Étudier les variations de la fonction g_p sur \mathbb{R}^+ et dresser le tableau de variations de g_p sur \mathbb{R} . On notera $\beta_p = g(\alpha_p)$.
- 5. Déduire des variations de g_p le signe de β_p .
- 6. (a) Déterminer pour tout $x \in \mathbb{R}$ le signe de $g_p(x) + x \frac{\pi}{2}$. Déterminer la limite en $+\infty$ de $g_p(x) + x - \frac{\pi}{2}$ quand x tend vers $+\infty$.

- (b) En déduire que la courbe représentative de g_p possède une asymptote en $+\infty$ et en $-\infty$ dont on donnera une équation et on précisera si la courbe est au dessus ou en dessous de cette asymptote.
- 7. Tracer le graphe de g_2 ; on fera apparaître la tangente en O, les tangentes horizontales ainsi que les asymptotes.

On prendra 2cm pour unité et on utilisera pour le graphe (uniquement) le fait que $\frac{\pi}{4} - \frac{1}{2} \approx 0.3$

Partie II: Étude d'une réciproque

8. Montrer que la fonction g_p réalise une bijection de $[\alpha_p; +\infty[$ sur un intervalle I_p que l'on précisera.

On note φ_p la bijection réciproque de $\widetilde{g_p}$: $[\alpha_p; +\infty[\longrightarrow I_p : autrement dit <math>\varphi_p = \widetilde{g_p}^{-1}.$ $x \longmapsto g_p(x)$

9. Quels sont les ensembles de départ et d'arrivée de φ_p ?

Justifier que 0 appartient au domaine de définition de φ_p .

Quel est le sens de variation de la fonction φ_p ?

Que vaut $\varphi_p(\beta_p)$? (où β_p est défini à la question 4 de la partie 1)

Quelle est la limite de φ_p en $-\infty$?

On note $\ell_p = \varphi_p(0)$.

10. Que vaut $g_p(\ell_p)$? En déduire que ℓ_p = arctan $(p\ell_p)$.

Montrer que $g_p\left(\frac{\pi}{2}\right) < 0$.

En déduire que $\ell_p \in \left] \alpha_p; \frac{\pi}{2} \right[$.

- 11. Montrer que φ_p est dérivable sur un intervalle J_p , que l'on explicitera.
- 12. Pour tout $y \in J_p$ exprimer $\varphi'_p(y)$ en fonction de $\varphi_p(y)$.
- 13. Tracer dans le même repère que celui de la question 7 le graphe de φ_2 .

La partie III suivante rapportera des points bonus et ne doit être abordée que si tout le reste a été traité.

Partie III : Étude d'une fonction définie implicitement

Dans cette partie, on considère la fonction $\Lambda\colon]1;+\infty[\longrightarrow \mathbb{R} \text{ où } \ell_p \text{ désigne le nombre réel défini dans la partie II.} \qquad p \longmapsto \ell_p$

- 14. Montrer que la fonction Λ est bornée; préciser un de ses majorants et un de ses minorants.
- 15. Soit p et q deux nombres réels strictement supérieurs à 1 tels que p < q.
 - (a) Justifier que $\arctan(p\ell_q) < \arctan(q\ell_q)$.
 - (b) En déduire que $g_p(\ell_q) < 0$.
 - (c) En déduire que $\ell_p < \ell_q$.
 - (d) Quelle est le sens de variation de la fonction Λ ?
- 16. (a) Montrer que pour tout $p \geqslant \frac{4}{\pi}$, $\arctan\left(\frac{p\pi}{4}\right) \geqslant \frac{\pi}{4}$.
 - (b) En déduire que pour tout $p \geqslant \frac{4}{\pi}$, $\frac{\pi}{4} \leqslant \ell_p \leqslant \frac{\pi}{2}$.
 - (c) Déterminer la limite de $\arctan(p\ell_p)$ quand p tend vers $+\infty$.
 - (d) En déduire la limite de fonction Λ quand p tend vers $+\infty$.