DEVOIR MAISON 2

Exercice 1 – Pour tout $\lambda \in \mathbb{R} \setminus \{-1\}$, on considère la fonction

$$f_{\lambda}: \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ f_{\lambda}: & x & \longmapsto & \frac{1}{1+\lambda} \Big(\ln(1+\mathrm{e}^{x}) + \lambda \ln(1+\mathrm{e}^{-x}) \Big) \end{array}$$

et on note Γ_{λ} sa courbe représentative dans le plan.

On considère également la fonction $g: x \mapsto \ln(1+e^x) - \frac{xe^x}{1+e^x}$.

Il est facile de montrer que la fonction g et les fonctions f_{λ} , pour tout $\lambda \in \mathbb{R} \setminus \{-1\}$, sont dérivables sur \mathbb{R} .

- 1. (a) Montrer que la fonction g est paire. Déterminer la limite de g en $-\infty$. En déduire $\lim_{x \to +\infty} g(x)$.
 - (b) Pour tout $x \in \mathbb{R}$, calculer g'(x) puis dresser le tableau de variations de g.
- 2. (a) Pour tout $\lambda \in \mathbb{R} \setminus \{-1,0\}$, démontrer la relation : $\forall x \in \mathbb{R}$, $f_{1/\lambda}(x) = f_{\lambda}(-x)$.
 - (b) Quelle propriété peut-on en déduire pour f_1 ?
 - (c) Que pouvez-vous en déduire quant aux courbes Γ_{λ} et $\Gamma_{1/\lambda}$?
- 3. Dans cette question, λ désigne un nombre réel strictement supérieur à -1.
 - (a) Montrer que, pour tout $x \in \mathbb{R}$, $f'_{\lambda}(x) = \frac{e^x \lambda}{(1 + \lambda)(1 + e^x)}$.
 - (b) Déterminer, en fonction de la valeur de λ , les limites en $+\infty$ et $-\infty$ de f_{λ} .
 - (c) Dresser le tableau de variations de f_{λ} . On distinguera les cas $\lambda \in]-1;0[$, $\lambda = 0$ et $\lambda > 0$.
- 4. On admet que la droite d'équation $y = \frac{x}{2}$ est une asymptote de Γ_1 en $+\infty$ et que Γ_1 est audessus de cette asymptote sur $[0, +\infty[$.

 Tracer Γ_1 .
- 5. Pour tout $\lambda \in \mathbb{R}^{+*}$, on note $M(\lambda)$ l'unique point de Γ_{λ} où la tangente à Γ_{λ} est horizontale. On note \mathcal{E} l'ensemble de tous ces points M_{λ} lorsque λ parcourt $]0, +\infty[$.
 - (a) Donner, pour tout $\lambda \in \mathbb{R}^{+*}$, les coordonnées du point $M(\lambda)$.
 - (b) Montrer qu'une équation cartésienne de \mathcal{E} est y = g(x), autrement dit, que \mathcal{E} est la courbe représentative de la fonction g.

Exercice 2 – On considère l'application $f: \mathbb{C} \setminus \{i\} \longrightarrow \mathbb{C}^*$ définie par $f(z) = \frac{1}{\overline{z} + i}$

- 1. Calculer l'image par f de 2 et de 1+i, ainsi que leurs antécédents (on donnera tous les résultats sous forme algébrique).
- 2. (a) Déterminer les nombres complexes z pour lesquels $f(z) \in \mathbb{R}$, donner une interprétation géométrique.
 - (b) Même question pour $f(z) \in i\mathbb{R}$, puis pour $f(z) \in \mathbb{U}$.
- 3. (a) Déterminer l'image par f de l'axe imaginaire pur (privé de i).
 - (b) i. Montrer que pour tout $x \in \mathbb{R}$, $\left| f(x) + \frac{i}{2} \right| = \frac{1}{2}$.

- ii. Montrer que tout $\theta \in [0, 2\pi] \setminus \left\{ \frac{\pi}{2} \right\}$, $f\left(\frac{\cos(\theta)}{1 \sin(\theta)} \right) = -\frac{i}{2} + \frac{e^{i\theta}}{2}$.
- iii. En déduire que l'image par f de l'axe réel est le cercle de centre $A\left(-\frac{i}{2}\right)$ et de rayon $\frac{1}{2}$, privé de l'origine O.
- (c) Soit $z = e^{i\theta} \left(\operatorname{avec} \theta \neq \frac{\pi}{2} [2\pi] \right)$, montrer que $f(z) = -\frac{i}{2} + \frac{1}{2} \tan \left(\frac{\pi}{4} + \frac{\theta}{2} \right)$. En déduire l'image par f du cercle trigonométrique privé de i.
- 4. (a) Déterminer les nombres complexes invariants par f. On notera a celui qui a la plus grande partie imaginaire, et b l'autre.
 - (b) Montrer que, si $z \notin i\mathbb{R}$, $\frac{b-f(z)}{a-f(z)} = \frac{b}{a} \times \frac{b+\overline{z}}{a+\overline{z}}$.
 - (c) En notant I le point d'affixe i dans le plan complexe, M celui d'affixe z, et M' celui d'affixe f(z), montrer que M' appartient à la demi-droite d'origine O dirigée par le vecteur \overrightarrow{IM} .
 - (d) (pour les motivés) Donner une interprétation géométrique intelligente de ces deux résultats, et en déduire une façon de construire le point M' à partir du point M.