COLLES – SEMAINE 4

Exercice 1 (Question de cours) – Montrer que pour tout a et b strictement positifs, $\ln(a \times b) = \ln(a) + \ln(b)$ et que $\ln\left(\frac{1}{a}\right) = -\ln(a)$.

Exercice 2 (Question de cours) – Montrer que pour tout $x \in \mathbb{R}_+^*$, $\ln(x) \leqslant x - 1$ et que pour tout $x \in \mathbb{R}$, $\exp(x) \geqslant x + 1$.

Exercice 3 (Question de cours) – Étudier les variations de la fonction $f: x \mapsto x^x$ sur son domaine de définition.

Exercice 4 (Question de cours) – Pour tout a > 0 et b > 0,

$$1. \lim_{x \to +\infty} \frac{(\ln(x))^a}{x^b} = 0,$$

2.
$$\lim_{x \to 0^+} x^b |\ln(x)|^a = 0$$
.

Exercice 5 – Soit $f: x \mapsto x + \frac{1 - e^x}{1 + e^x}$.

- 1. Déterminer l'ensemble de définition de f.
 - 2. Étudier la parité de f.
 - 3. Déterminer les limites de f aux bornes de son ensemble de définition.
 - 4. Montrer que les droites D: y = x + 1 et D': y = x 1 sont des asymptotes de la courbe représentative de fonction f.
 - 5. Déterminer les variations de f.
 - 6. Tracer f.

Exercice 6 – Pour tout $m \in \mathbb{R}$, on pose $f_m(x) = \frac{x+m}{x^2+1}$. On note \mathcal{C}_m la courbe représentative de f_m .

- 1. Montrer que les tangentes aux courbes C_m au point d'abscisse 0 pour toutes les valeurs de m sont parallèles.
- 2. Montrer que les tangentes aux courbes C_m au point d'abscisse 1 pour toutes les valeurs de m sont concourantes en un même point.

Exercice 7 – On pose a et b deux réels tels que 0 < a < b. Étudier $f: x \mapsto \frac{\ln(1+ax)}{\ln(1+bx)}$.

Exercice 8 – On étudie la fonction f telle que $f(x) = \sqrt{\tan(x)}$.

- 1. Déterminer l'ensemble de définition de f.
- 2. Étudier la parité et la périodicité de f.
- 3. Déterminer les variations de f.
- 4. Tracer la courbe représentative de f.

Exercice 9 – Déterminer quelles fonctions sont à la fois monotones et périodiques.

Exercice 10 – Étudier et tracer la fonction $f: x \mapsto \sin^5(x) + \cos^5(x)$.

Exercice 11 – Résoudre dans \mathbb{R}^2 le système suivant :

$$(S) \begin{cases} ch(x) + ch(y) = 4 \\ sh(x) + sh(y) = 1 \end{cases}$$

Exercice 12 -

- 1. Étudier la fonction $u: x \mapsto x \ln(x) + (1-x) \ln(1-x)$.
- 2. Montrer que pour tout $x \in]0,1[$, on a

$$x^x(1-x)^{1-x} \geqslant \frac{1}{2}$$

Exercice 13 -

- 1. Etudier la fonction $h: x \mapsto \frac{\ln(x)}{x}$.
- 2. Soient m et n des entiers strictement positifs. Montrer que

$$n^m = m^n \iff f(n) = f(m).$$

3. Déterminer tous les entiers strictement positifs m et n tels que $n^m = m^n$.

Exercice 14 – Montrer que pour tout $x \in \mathbb{R}$, $\operatorname{ch}(x) \ge 1 + \frac{x^2}{2}$.

Exercice 15 – Résoudre dans $\mathbb{R}: 3^x + 4^x = 5^x$.

Exercice 16 – Soit $y \in [1, +\infty[$. Montrer que l'équation ch(x) = y d'inconnue x réelle possède deux solutions (si y > 1), qui sont opposées l'une de l'autre. Exprimer la solution positive en fonction de y.

Exercice 17 – Tracer le graphe de la fonction $x \mapsto \frac{1}{\ln(3-|x|)}$.