COLLES – SEMAINE 3

Exercice 1 (Question de cours) – Soient z, z' deux nombres complexes. On a

- 1. $e^z \neq 0$.
- 2. $e^{z+z'} = e^z e^{z'}$. En particulier, e^{-z} est l'inverse de e^z .
- 3. $|e^z| = e^{\text{Re}(z)}$ et $\arg(e^z) = \text{Im}(z)[2\pi]$.
- 4. Tout nombre complexe non nul a est l'image par l'exponentielle complexe d'au moins un nombre complexe z_0 . Ses antécédents sont alors les nombres complexes $z_0+2ik\pi$ avec $k \in \mathbb{Z}$.

Exercice 2 (Question de cours) – Soient $a \in \mathbb{C}^*$, $b, c \in \mathbb{C}$ et l'équation du second degré $az^2 + bz + c = 0$ d'inconnue complexe z. On note $\Delta = b^2 - 4ac$ le discriminant de cette équation.

1. Si $\Delta = 0$, alors (*E*) admet une unique solution (dite «solution double») $z_0 = \frac{-b}{2a}$. De plus, on a:

$$\forall z \in \mathbb{C}, \quad az^2 + bz + c = a(z - z_0)^2$$

2. Si $\Delta \neq 0$, (E) admet exactement deux solutions, $z_1 = \frac{-b+\delta}{2a}$ et $z_2 = \frac{-b-\delta}{2a}$, où δ est une racine carrée de Δ . Dans ce cas, on peut factoriser le trinôme sous la forme :

$$\forall z \in \mathbb{C}, \quad az^2 + bz + c = a(z - z_1)(z - z_2)$$

Exercice 3 (Question de cours) – Soit un entier $n \ge 1$ un nombre entier. Alors l'ensemble des racines n-ièmes de l'unité est

$$\mathbb{U}_n = \left\{ e^{2ik\pi/n}; k \in \mathbb{Z} \right\} = \left\{ e^{2ik\pi/n}; k \in \llbracket 0, n-1 \rrbracket \right\}$$

Exercice 4 (Question de cours) – Soit $n \in \mathbb{N}^*$, a un complexe non-nul. On note $a = re^{it}$ avec t > 0 et $t \in \mathbb{R}$. L'ensemble des racines n-ièmes de a est

$$\left.\left\{ \left.r^{1/n}\mathrm{e}^{i\left(\frac{t}{n}+\frac{2k\pi}{n}\right)}\right|\;k\in\left[\!\left[0,n-1\right]\!\right]\right\} .$$

Tout nombre complexe non nul a possède exactement n racines n-ièmes distinctes. Cet ensemble s'écrit également $\left\{\omega e^{2ik\pi/n} \mid k \in [0, n-1]\right\}$, où ω est une racine n-ième de a particulière.

Exercice 5 – A tout nombre complexe z différend de 1+i, on associe le nombre $y_z = \frac{z-3i}{z-(1+i)}$.

- 1. Déterminer l'ensemble des points M d'affixe z tels que y_z soit imaginaire pur.
- 2. Déterminer l'ensemble des points M d'affixe z tels que y_z soit réel strictement négatif.
- 3. Les représenter dans le plan complexe.

Exercice 6 – Déterminer la partie réelle et la partie imaginaire de $\omega = \left(\frac{1+i\sqrt{3}}{1-i}\right)^{20}$.

Exercice 7 – Donner l'écriture sous forme exponentielle de

$$\frac{1 - e^{i\frac{\pi}{3}}}{1 + e^{i\frac{\pi}{3}}}$$

Exercice 8 − Résoudre dans C l'équation

$$e^z = 3\sqrt{3} - 3i$$
.

Exercice 9 – On pose $z = \frac{1 + i\sqrt{3}}{1 + i}$.

Mettre z sous forme algébrique et sous forme trigonométrique et en déduire les valeurs de $\cos(\frac{\pi}{12})$ et $\sin(\frac{\pi}{12})$

Exercice 10 – On pose $z = \frac{\sqrt{2} + 1 + i}{-\sqrt{2} + 1 - i}$.

- 1. Écrire 1 + i et 1 i sous forme exponentielle.
- 2. En factorisant par l'angle moitié, montrer que

$$z = i e^{i\frac{\pi}{4}} \frac{\cos\left(\frac{\pi}{8}\right)}{\sin\left(\frac{\pi}{8}\right)}$$

- 3. En déduire le module et un argument de z.
- 4. Mettre *z* sous forme algébrique.
- 5. En calculant le module de z d'une autre façon qu'à la question 4)c), déterminer $\tan\left(\frac{\pi}{8}\right)$.

Exercice 11 – Résoudre l'équation d'inconnue complexe z

$$z^2 - (3+4i)z - 1 + 5i = 0.$$

Exercice 12 - Résoudre dans C l'équation

$$z^{3} - (3+2i)z^{2} + (3+11i)z - 2(1+7i) = 0.$$

sachant que l'une des solutions est réelle.

Exercice 13 – Calculer la longueur d'un coté d'un polygone régulier à *n* cotés inscrit dans le cercle unité.

Exercice 14 – Soit $n \in \mathbb{N}^*$. Résoudre l'équation

$$(z+i)^n = (z-i)^n.$$

Exercice 15 – Résoudre l'équation suivante d'inconnue $z \in \mathbb{C}$:

$$1 + \left(\frac{z+i}{z-i}\right) + \left(\frac{z+i}{z-i}\right)^2 + \left(\frac{z+i}{z-i}\right)^3 = 0.$$

Exercice 16 – On veut résoudre dans \mathbb{C} l'équation suivante d'inconnue complexe z.

(E)
$$z^3 - (3+2i)z^2 + (3+11i)z - 2(1+7i) = 0$$
,

sachant que l'une des solutions est réelle.

- 1. Déterminer la solution réelle de cette équation. On la note *a*.
- 2. Déterminer un polynôme P du second degré tel que pour tout $z \in \mathbb{C}$, on ait

$$z^3 - (3+2i)z^2 + (3+11i)z - 2(1+7i) = (z-a) \times P(z).$$

3. Résoudre (E).