COLLES – SEMAINE 1

Exercice 1 (Question de cours) – Soit $(u_n)_{n\in\mathbb{N}}$ la suite définie par $u_0=0, u_1=1$, et pour tout $n\in\mathbb{N}, u_{n+2}=3u_{n+1}-2u_n$. Démontrer par une récurrence double que pour tout $n\in\mathbb{N}, u_n=2^n-1$.

Exercice 2 (Question de cours) – Montrer que toute fonction f définie sur \mathbb{R} s'écrit de manière unique comme somme d'une fonction paire et d'une fonction impaire.

Exercice 3 (Question de cours) – Montrer que $\bigcup_{k=1}^{+\infty} \left] -\infty, k \right] = \mathbb{R}$.

Exercice 4 (Question de cours) – Montrer que pour tout $n \in \mathbb{N}$, $\frac{n(n+1)}{2}$ est un entier naturel.

Exercice 5 (Question de cours) – Énoncer et démontrer l'inégalité triangulaire généralisée.

Exercice 6 (Question de cours) – Montrer que pour tout $x \in \mathbb{R}$: $\lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor = \lfloor 2x \rfloor$.

Exercice 7 – Résoudre l'équation |x-4| = 2x + 10 d'inconnue $x \in \mathbb{R}$.

Exercice 8 – Résoudre l'équation (E) : $\frac{x}{x+2} + \frac{2}{x} = -3$.

Exercice 9 – Résoudre dans \mathbb{R} l'équation (*E*) : $\sqrt{x^2 + 1} = 2x + 1$.

Exercice 10 – Résoudre dans \mathbb{R} l'équation $\sqrt{x+12} = \sqrt{x^2+2x-8}$.

Exercice 11 – Résoudre dans \mathbb{R} l'équation $2x - 1 = \sqrt{x^2 + x + 13}$.

Exercice 12 – Résoudre dans \mathbb{R} l'équation $9 - x = \sqrt{3 + x}$.

Exercice 13 – Résoudre dans \mathbb{R} l'équation |2x-4| = |x-1| puis l'inéquation $|2x-4| \ge |x-1|$.

Exercice 14 − Résoudre dans R l'équation

$$|x| + |x + 1| + |x + 2| = 3$$
.

Exercice 15 − Résoudre dans R

$$|x+12| = |x^2-8|, \qquad |x+12| \le |x^2-8|$$

Exercice 16 – Soient *a* et *b* deux réels.

1. Montrer que

$$a + b \notin \mathbb{Q} \Rightarrow a \notin \mathbb{Q}$$
 Ou $b \notin \mathbb{Q}$.

2. La réciproque de cette proposition est-elle vraie quels que soient *a* et *b*?

Exercice 17 – On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 = 2$$
, $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{3}{4}u_n - \frac{1}{2}$.

Montrer que pour tout entier naturel n, $u_n = 4 \times \left(\frac{3}{4}\right)^n - 2$.

Exercice 18 – On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 = 1$$
, $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{1}{3}u_n + 4$.

Montrer que pour tout entier naturel n, $u_n = 6 - 5 \times \left(\frac{1}{3}\right)^n$.

Exercice 19 - Montrer que

$$\forall n \in \mathbb{N}^*, \qquad 1^3 + 2^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

Exercice 20 – Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par

$$u_0 = 2;$$
 $u_1 = 3;$ $\forall n \in \mathbb{N}, u_{n+2} = 3u_{n+1} - 2u_n.$

- 1. Calculer quelques termes de cette suite, émettre une conjecture sur le terme général de cette suite.
- 2. Démontrer cette conjecture.

Exercice 21 – Soit $(u_n)_{n\in\mathbb{N}}$ une suite définie par

$$u_0 = 0;$$
 $u_1 = 1;$ $\forall n \in \mathbb{N}, \ u_{n+2} = \frac{u_n + u_{n+1}}{2} + 1.$

Montrer que cette suite est strictement croissante

Exercice 22 – Déterminer toutes les fonctions $f: \mathbb{R} \to \mathbb{R}$ dérivables telles que

$$\forall x, y \in \mathbb{R}, \quad f(x+y) = f(x) + f(y).$$

Exercice 23 – L'objectif de l'exercice est de déterminer toutes les fonctions $f : \mathbb{R} \to \mathbb{R}$ vérifiant :

(*E*)
$$\forall x \in \mathbb{R}$$
, $f(x) + x f(1-x) = 1 + x$.

- 1. Soit f une fonction vérifiant (E). Que vaut f(0)? f(1)?
- 2. Soit $x \in \mathbb{R}$. En appliquant (*E*) en 1 x, déterminer f(x).
- 3. Conclure.