Interrogation nº 7

Exercice 1 Questions de cours

- 1. Donner la valeur de $\sum_{k=1}^{n} k^2$.
- 2. Soit $q \in \mathbb{R}$. Donner la valeur de $\sum_{k=0}^n q^k$ et $\sum_{k=1}^n q^k$.
- 3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q et de premier terme u_1 , donner l'expression de u_n en fonction de n.
- 4. Soit f une fonction définie sur un intervalle I. Ecrire avec des quantificateurs « La fonction f admet un minimum sur I ».
- 5. Combien y a-t-il d'entiers dans l'intervalle [m; n] pour $m \leq n$?
- 6. Quelle égalité relie n! et (n+1)! pour $n \in \mathbb{N}$?
- 7. Donner l'expression (avec les factorielles) de $\binom{n}{p}$ pour tout $p \in \mathbb{N}$ et $n \in \mathbb{N}$.
- 8. Enoncer la formule du binôme de Newton.
- 9. Soient f et g deux fonctions définies respectivement sur \mathcal{D}_f et \mathcal{D}_g . Comment définit-on la composée de f par g? (On n'oubliera pas de préciser les conditions de cette définition).
- 10. (a) Quel est le domaine de définition de la fonction logarithme népérien?
 - (b) Tracer sa courbe représentative?
- 11. Compléter les assertions suivantes :
 - $\forall a \in \mathbb{R}_+^*$, $\forall b \in \mathbb{R}_+^*$, $\ln(ab) = \dots$
 - $\forall a \in \mathbb{R}_{+}^{*}$, $\ln\left(\frac{1}{a}\right) = \dots$ $\forall a \in \mathbb{R}_{+}^{*}$, $\forall b \in \mathbb{R}_{+}^{*}$, $\ln\left(\frac{a}{b}\right) = \dots$ $\forall a \in \mathbb{R}_{+}^{*}$, $\forall n \in \mathbb{Z}$, $\ln(a^{n}) = \dots$ $\forall a \in \mathbb{R}_{+}^{*}$, $\ln(\sqrt{a}) = \dots$
- 12. Soit $\alpha \in \mathbb{R}$, comment définit-on x^{α} ? Pour quels x?
- 13. Compléter : $\forall x \in \mathbb{R}, \sqrt{x^2} = \dots$
- 14. (a) Sur quel domaine est défini la fonction tangente?
 - (b) Quelle est l'expression de sa dérivée?
 - (c) Sur quel domaine est défini la fonction arctangente?
 - (d) Quelle est l'expression de sa dérivée?
- 15. Soit $x \in \mathbb{R}$, comment définit-on |x|?
- 16. Soit une fonction f dérivable en $a \in \mathbb{R}$. Donner l'expression de la tangente à la courbe de f au point d'abscisse a.
- 17. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. A quelle condition la matrice A est-elle inversible? Le cas échéant, donner son inverse.

Exercice 2

 $(2+x)^6$. Développer l'expression suivante à l'aide du binôme de Newton :

Exercice 3

Simplifier les deux expressions suivantes :

$$A = \ln((3x-1)^2) - \ln\left(\frac{3x-1}{2}\right) + \ln(\sqrt{3x-1}) - \ln\left(\frac{(3x-1)(x^2+1)}{2}\right)$$
$$B = \frac{e^{x^2+1} \times (e^{2x})^2}{e^{\ln(x)-x^2+4} \times e}$$

Exercice 4

Résoudre dans $\mathbb R$ l'inéquation suivante : $\frac{x^2-5x+6}{x(\mathrm e^x-1)(x-2)} \leq 0.$

Exercice 5

Déterminer la valeur des sommes suivantes :

1.
$$S_n = \sum_{k=0}^{n} (6k - 4)$$

$$2. T_n = \sum_{k=0}^n \frac{3^{2k}}{2^{k+2}}$$

Exercice 6

On considère la matrice $A=\begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$.

- 1. Calculer $A^3 A$.
- 2. La matrice A est-elle inversible? Si oui, expliciter son inverse.

Exercice 7

Soit trois matrices A, P et D telles que la matrice P soit inversible et telle que $A = PDP^{-1}$. Montrer que pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.

Exercice 8

Déterminer le domaine de définition de la fonction f définie par $f(x) = \ln\left(\frac{x^2 - 5x + 6}{x(e^x - 1)(x - 2)}\right)$.

Exercice 9

Soit la suite $(u_n)_n$ définie par $u_1=7$ et pour tout $n\in\mathbb{N}^*$, $u_{n+1}=3u_n-4$. Déterminer l'expression de u_n pour $n\in\mathbb{N}^*$.

Exercice 10

Soit la suite $(u_n)_n$ définie par $u_0=0$, $u_1=1$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=u_n-u_{n+2}$. Déterminer l'expression de u_n pour $n\in\mathbb{N}$.

Corrigé: Interrogation nº 7

Exercice 1 Questions de cours

1. Donner la valeur de $\sum_{k=1}^{n} k^2$.

$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

2. Soit $q \in \mathbb{R}$. Donner la valeur de $\sum_{k=0}^n q^k$ et $\sum_{k=1}^n q^k$.

Si
$$q=1$$
, $\sum_{k=0}^n q^k=n+1$ et $\sum_{k=1}^n q^k=n$.
Si $q\neq 1$, $\sum_{k=0}^n q^k=\frac{1-q^{n+1}}{1-q}$ et $\sum_{k=1}^n q^k=q\frac{1-q^n}{1-q}$.

3. Soit $(u_n)_{n\in\mathbb{N}}$ une suite géométrique de raison q et de premier terme u_1 , donner l'expression de u_n en fonction de n.

Soit
$$n \in \mathbb{N}^*$$
, $u_n = u_1 q^{n-1}$.

4. Soit f une fonction définie sur un intervalle I. Ecrire avec des quantificateurs « La fonction f admet un minimum sur I »

$$\exists x_0 \in I, \forall x \in I, f(x) \ge f(x_0)$$

5. Combien y a-t-il d'entiers dans l'intervalle $\llbracket m;n \rrbracket$ pour $m \leq n$?

Il y a n-m+1 entiers dans cet intervalle.

6. Quelle égalité relie n! et (n+1)! pour $n \in \mathbb{N}$?

$$(n+1)! = n! \times (n+1).$$

7. Donner l'expression (avec les factorielles) de $\binom{n}{p}$ pour tout $p \in \mathbb{N}$ et $n \in \mathbb{N}$.

Si
$$p \le n$$
, $\binom{n}{p} = \frac{n!}{p!(n-p)!}$ et si $p > n$, $\binom{n}{p} = 0$.

8. Enoncer la formule du binôme de Newton.

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}.$$

9. Soient f et g deux fonctions définies respectivement sur \mathcal{D}_f et \mathcal{D}_g . Comment définit-on la composée de f par g? (On n'oubliera pas de préciser les conditions de cette définition).

La composée de f par g se note $g \circ f$, elle est définie sur \mathcal{D}_f , à condition que $f(\mathcal{D}_f) \subset \mathcal{D}_g$ et on a :

$$\forall x \in \mathcal{D}_f, \quad (g \circ f)(x) = g(f(x)).$$

10. (a) Quel est le domaine de définition de la fonction logarithme népérien?

 \mathbb{R}_{+}^{*}

(b) Tracer sa courbe représentative?

cf cours

- 11. Compléter les assertions suivantes :
 - $\forall a \in \mathbb{R}_+^*, \forall b \in \mathbb{R}_+^*, \ln(ab) = \dots$
 - $\forall a \in \mathbb{R}_+^*$, $\ln\left(\frac{1}{a}\right) = \dots$
 - $\forall a \in \mathbb{R}_{+}^{*}, \forall b \in \mathbb{R}_{+}^{*}, \ln\left(\frac{a}{b}\right) = \dots$ $\forall a \in \mathbb{R}_{+}^{*}, \forall n \in \mathbb{Z}, \ln(a^{n}) = \dots$ $\forall a \in \mathbb{R}_{+}^{*}, \ln(\sqrt{a}) = \dots$

 - - $\forall a \in \mathbb{R}_+^*$, $\forall b \in \mathbb{R}_+^*$, $\ln(ab) = \ln(a) + \ln(b)$
 - $\forall a \in \mathbb{R}_+^*$, $\ln\left(\frac{1}{a}\right) = -\ln(a)$
 - $\forall a \in \mathbb{R}_{+}^{*}$, $\forall b \in \mathbb{R}_{+}^{*}$, $\ln\left(\frac{a}{b}\right) = \ln(a) \ln(b)$ $\forall a \in \mathbb{R}_{+}^{*}$, $\forall n \in \mathbb{Z}$, $\ln(a^{n}) = n \ln(a)$

 - $\forall a \in \mathbb{R}_+^*$, $\ln(\sqrt{a}) = \frac{1}{2}\ln(a)$
- 12. Soit $\alpha \in \mathbb{R}$, comment définit-on x^{α} ? Pour quels x?

 x^{α} est défini pour $x \in \mathbb{R}_{+}^{*}$ par $x^{\alpha} = e^{\alpha \ln(x)}$.

13. Compléter : $\forall x \in \mathbb{R}, \sqrt{x^2} = \dots$

 $\forall x \in \mathbb{R}, \ \sqrt{x^2} = |x|.$

14. (a) Sur quel domaine est défini la fonction tangente?

 $\mathbb{R}\setminus\{\frac{\pi}{2}+k\pi,k\in\mathbb{Z}\}$

(b) Quelle est l'expression de sa dérivée?

 $\tan'(x) = 1 + \tan^2(x) = \frac{1}{\cos^2(x)}$

(c) Sur quel domaine est défini la fonction arctangente?

 \mathbb{R}

(d) Quelle est l'expression de sa dérivée?

$$\arctan'(x) = \frac{1}{1+x^2}$$

15. Soit $x \in \mathbb{R}$, comment définit-on |x|?

 $\lfloor x \rfloor$ est l'unique entier relatif tel que $\lfloor x \rfloor \leq x < \lfloor x \rfloor + 1$

16. Soit une fonction f dérivable en $a \in \mathbb{R}$. Donner l'expression de la tangente à la courbe de f au point d'abscisse a.

$$y = f'(a)(x - a) + f(a)$$

17. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$. A quelle condition la matrice A est-elle inversible? Le cas échéant, donner son inverse.

La matrice A est inversible ssi $ad-bc \neq 0$ et dans ce cas $A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$

Exercice 2

Développer l'expression suivante à l'aide du binôme de Newton : $(2+x)^6$.

On a:

$$(2+x)^6 = \sum_{k=0}^6 \binom{6}{k} 2^k \times x^{6-k}$$

$$= x^6 + 6 \times 2x^5 + \binom{6}{2} \times 4x^4 + \binom{6}{3} \times 8x^3 + \binom{6}{4} \times 16x^2 + 6 \times 32x + 64$$

$$= x^6 + 12x^5 + 15 \times 4x^4 + 20 \times 8x^2 + 15 \times 16x^2 + 192x + 64$$

$$= x^6 + 12x^5 + 60x^4 + 160x^3 + 240x^2 + 192x + 64$$

Exercice 3

Simplifier les deux expressions suivantes :

$$A = \ln((3x-1)^2) - \ln\left(\frac{3x-1}{2}\right) + \ln(\sqrt{3x-1}) - \ln\left(\frac{(3x-1)(x^2+1)}{2}\right)$$

$$A = 2\ln(3x - 1) - \ln(3x - 1) + \ln(2) + \frac{1}{2}\ln(3x - 1) - \ln(3x - 1) - \ln(x^2 + 1) + \ln(2)$$
$$= \frac{1}{2}\ln(3x - 1) - \ln(x^2 + 1) + 2\ln(2)$$

$$B = \frac{e^{x^2 + 1} \times (e^{2x})^2}{e^{\ln(x) - x^2 + 4} \times e}$$

$$B = \frac{e^{x^2 + 1 + 4x}}{xe^{-x^2 + 4 + 1}} = \frac{e^{x^2 + 4x + 1 + x^2 - 5}}{x} = \frac{e^{2x^2 + 4x - 4}}{x}$$

Exercice 4

Résoudre dans $\mathbb R$ l'inéquation suivante : $\frac{x^2-5x+6}{x(\mathrm e^x-1)(x-2)} \leq 0.$

Dressons le tableau de signes de ce quotient. Pour cela, calculons les racines du polynôme x^2-5x+6 . On a $\Delta=(-5)^2-4\times 1\times 1\times 6=25-24=1$ et $x_1=2,\ x_2=3$.

Puis résolvons : $e^x - 1 > 0$, on a :

$$e^x - 1 > 0 \iff e^x > 1 \iff x > 0.$$

On a alors :

x	$-\infty$	(0	2		3		$+\infty$
$x^2 - 5x + 6$		-	+	0	_	0	+	
x-2		-	_	0		+		
x	_	- (9		+			
$e^x - 1$	_	- (9		+			
$\frac{x^2 - 5x + 6}{x(e^x - 1)(x - 2)}$	_	-	_		_	0	+	

On a alors $\left[\mathscr{S} =]-\infty, 0[\cup]0, 2[\cup]2, 3] \right]$

Exercice 5

Déterminer la valeur des sommes suivantes :

1.
$$S_n = \sum_{k=0}^{n} (6k - 4)$$

$$S_n = 6\sum_{k=0}^n k - \sum_{k=0}^n 4 \quad \text{par linéarité de la somme}$$

$$= 6 \times \frac{n(n+1)}{2} - 4(n+1)$$

$$= (n+1) \times \left(\frac{6n}{2} - 4\right)$$

$$= (n+1)(3n-4)$$

2.
$$T_n = \sum_{k=0}^{n} \frac{3^{2k}}{2^{k+2}}$$

$$\begin{split} T_n &= \sum_{k=0}^n \frac{(3^2)^k}{2^2 \times 2^k} \\ &= \frac{1}{4} \sum_{k=0}^n \left(\frac{9}{2}\right)^k \\ &= \frac{1}{4} \times \frac{1 - \left(\frac{9}{2}\right)^{n+1}}{1 - \frac{9}{2}} \quad \text{car } \frac{9}{2} \neq 0 \\ &= \frac{1}{4} \times \frac{-2}{7} \left(1 - \left(\frac{9}{2}\right)^{n+1}\right) \\ &= -\frac{1}{14} \left(1 - \left(\frac{9}{2}\right)^{n+1}\right) \end{split}$$

Exercice 6

On considère la matrice $A=\begin{pmatrix}1&0&2\\0&-1&1\\1&-2&0\end{pmatrix}$.

1. Calculer $A^3 - A$.

On a : $A^3-A=\begin{pmatrix} 5 & 0 & 2\\ 0 & 3 & 1\\ 1 & -2 & 4 \end{pmatrix}-\begin{pmatrix} 1 & 0 & 2\\ 0 & -1 & 1\\ 1 & -2 & 0 \end{pmatrix}=4I_3.$

2. La matrice A est-elle inversible? Si oui, expliciter son inverse.

On a donc $A^3-A=4I_3$ soit $A imes \frac{1}{4}(A^2-I_3)=I_3$. La matrice A est donc inversible et $A^{-1}=\frac{1}{4}(A^2-I_3)$ soit :

$$A^{-1} = \frac{1}{4} \begin{pmatrix} 2 & -4 & 2 \\ 1 & -2 & -1 \\ 1 & 2 & -1 \end{pmatrix}.$$

Exercice 7

Soit trois matrices A, P et D telles que la matrice P soit inversible et telle que $A = PDP^{-1}$. Montrer que pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.

On démontre le résultat par récurrence. Notons pour $n \in \mathbb{N}$, $\mathcal{P}(n)$ la propriété « $A^n = PD^nP^{-1}$.»

Initialisation (n=0). $A^0=I_n$ par convention et $PD^0P^{-1}=PI_nP^{-1}=PP^{-1}=I_n$. Ainsi $A^0=PD^0P^{-1}$ et $\mathcal{P}(0)$ est vraie.

Hérédité Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$ vraie et montrons que $\mathcal{P}(n+1)$ est vraie.

$$\begin{split} A^{n+1} &= A \times A^n \\ &= APD^nP^{-1}, \quad \text{par hypothèse de récurrence} \\ &= PDP^{-1}PD^nP^{-1}, \quad \text{car } A = PDP^{-1} \\ &= PDI_nD^nP^{-1} \\ &= PD^{n+1}P^{-1} \end{split}$$

Ainsi $\mathcal{P}(n+1)$ est vraie et la propriété est héréditaire.

Conclusion La propriété étant initialisée et héréditaire, on en déduit que pour tout $n \in \mathbb{N}$, $A^n = PD^nP^{-1}$.

Exercice 8

Déterminer le domaine de définition de la fonction f définie par $f(x) = \ln\left(\frac{x^2 - 5x + 6}{x(e^x - 1)(x - 2)}\right)$.

La fonction $x \mapsto \ln(x)$ est définie sur \mathbb{R}_+^* donc d'après le tableau de signes dressé à l'exercice 4, on obtient que la fonction f est définie sur $]3, +\infty[$.

Exercice 9

Soit la suite $(u_n)_n$ définie par $u_1=7$ et pour tout $n\in\mathbb{N}^*$, $u_{n+1}=3u_n-4$. Déterminer l'expression de u_n pour $n\in\mathbb{N}^*$.

On reconnaît une suite arithmético-géométrique. On commence par chercher le réel α solution de l'équation $\alpha=3\alpha-4$. On obtient : $\alpha=2$. Posons alors la suite $(v_n)_n$ telle que pour tout $n\in\mathbb{N}$, $v_n=u_n-2$. On a alors pour tout $n\in\mathbb{N}$,

$$v_{n+1} = u_{n+1} - 2$$

= $3u_n - 4 - 2$
= $3(u_n - 2)$
= $3v_n$

La suite $(v_n)_n$ est donc géométrique de raison 3 et de premier terme $v_1=u_1-2=5$. On a alors pour tout $n\in\mathbb{N}^*$, $v_n=5(3)^{n-1}$. On en déduit que pour tout $n\in\mathbb{N}^*$, $u_n=2+5(3)^{n-1}$.

Exercice 10

Soit la suite $(u_n)_n$ définie par $u_0=0$, $u_1=1$ et pour tout $n\in\mathbb{N}$, $u_{n+1}=u_n-u_{n+2}$. Déterminer l'expression de u_n pour $n\in\mathbb{N}$.

On remarque que pour tout $n \in \mathbb{N}$, $u_{n+2} = -u_{n+1} + u_n$. On reconnaît une suite récurrente linéaire d'ordre 2. L'équation caractéristique associée est alors $\alpha^2 = -\alpha + 1$. Le discriminant de cette équation vaut 5, elle possède donc deux racines valant $\frac{-1-\sqrt{5}}{2}$ et $\frac{-1+\sqrt{5}}{2}$. Ainsi il existe des réels λ et μ tels que pour tout $n \in \mathbb{N}$,

$$u_n = \lambda \left(\frac{-1 - \sqrt{5}}{2}\right)^n + \mu \left(\frac{-1 + \sqrt{5}}{2}\right)^n.$$

Il reste à déterminer λ et μ , on a :

$$u_0 = 0 = \lambda + \mu$$

et

$$u_1 = 1 = \lambda \left(\frac{-1 - \sqrt{5}}{2}\right) + \mu \left(\frac{-1 + \sqrt{5}}{2}\right).$$

Ainsi $\lambda=-\mu$ et on obtient $\lambda=-\frac{1}{\sqrt{5}}$ et $\mu=+\frac{1}{\sqrt{5}}.$

En conclusion, pour tout $n \in \mathbb{N}$, $\left(u_n = -\frac{1}{\sqrt{5}} \left(\frac{-1-\sqrt{5}}{2}\right)^n + \frac{1}{\sqrt{5}} \left(\frac{-1+\sqrt{5}}{2}\right)^n\right)$