Corrigé du DS nº 1

Exercice 1

1. •
$$A = 4\sqrt{4 \times 6} - 5\sqrt{16 \times 6} + 4\sqrt{9 \times 6} = 8\sqrt{6} - 20\sqrt{6} + 12\sqrt{6} = 9$$
. Ainsi, $A = 0$

•
$$B = \frac{x^{15} \times x^2}{x^{-3}} = \frac{x^{17}}{x^{-3}} = x^{20}$$
. Ainsi, $B = x^{20}$

$$\bullet \ \ C = \frac{(1-\sqrt{3})^2}{(1+\sqrt{3})(1-\sqrt{3})} + \frac{(1+\sqrt{3})^2}{(1+\sqrt{3})(1-\sqrt{3})} = \frac{1-2\sqrt{3}+3+1+2\sqrt{3}+3}{(1+\sqrt{3})(1-\sqrt{3})} = \frac{8}{1-3} = -4. \quad \text{Ainsi, } \boxed{C=-4}$$

2. Soit $k \in \mathbb{N}$, multiplions par la quantité conjuguée, on a

$$\frac{1}{\sqrt{k} + \sqrt{k+1}} = \frac{1}{\sqrt{k+1} + \sqrt{k}} \times \frac{\sqrt{k+1} - \sqrt{k}}{\sqrt{k+1} - \sqrt{k}} = \frac{\sqrt{k+1} - \sqrt{k}}{(\sqrt{k+1})^2 - (\sqrt{k})^2} = \frac{\sqrt{k+1} - \sqrt{k}}{k+1-k} = \sqrt{k+1} - \sqrt{k}.$$

Exercice 2

1. On a:

$$4(x-2) - 3(6-2(3-4x)) + 3(7-2x) = 4x - 8 - 3(6-6+8x) + 21 - 6x$$
$$= 4x - 8 - 24x + 21 - 6x$$
$$= -26x + 13$$

Et donc,
$$4(x-2)-3(6-2(3-4x))+3(7-2x)=0 \iff -26x+13=0 \iff -26x=-13 \iff x=\frac{-13}{-26}=\frac{1}{2}$$
.

Donc,
$$\mathscr{S} = \left\{\frac{1}{2}\right\}$$
.

2. Commençons par déterminer le domaine de définition de l'inéquation. Cette inéquation est bien définie pour $x \neq -2$ donc $\mathcal{D} = \mathbb{R} \setminus \{-2\}$. Résolvons-la :

$$(E) \iff \frac{x-3}{x+2} + 4x - \frac{5x}{x+2} \iff \frac{x-3 + 4x(x+2) - 5x}{x+2} < 0 \iff \frac{4x^2 + 4x - 3}{x+2} < 0.$$

Il nous faut donc étudier le signe de $4x^2 + 4x - 3$ et le signe de x + 2. Etudions le signe de ces deux polynômes. Pour x + 2, on a :

$$x+2>0 \iff x>-2.$$

Pour
$$4x^2 + 4x - 3$$
, on a $\Delta = 64$, $x_1 = -\frac{3}{2}$ et $x_2 = \frac{1}{2}$.

On a alors le tableau de signe suivant :

x	$-\infty$	-2	$-\frac{3}{2}$	$\frac{1}{2}$	$+\infty$
Signe de $4x^2 + 4x - 3$		+	0 -	0	+
Signe de $x+2$	_	0	+		
Signe de $\frac{4x^2+4x-3}{x+2}$	_	+	0 -	Ó	+

On en déduit la solution $\boxed{\mathscr{S}=\left]-\infty;-2\right[\cup\left]-\frac{3}{2};\frac{1}{2}\right[}$

3. Commençons par déterminer le domaine de définition de l'équation. Pour que les racines soient bien définies, il faut que :

$$x-1\geqslant 0$$
 et $x+4\geqslant 0$.

Ainsi l'équation est bien définie pour $x\in [1;+\infty[$. Soit $x\in [1;+\infty[$, on a :

$$\sqrt{x-1} + \sqrt{x+4} = \sqrt{5}$$

$$\sqrt{x-1} = \sqrt{5} - \sqrt{x+4}$$

$$x - 1 = (\sqrt{5} - \sqrt{x+4})^2$$

$$x - 1 = 5 - 2\sqrt{5}\sqrt{x+4} + (x+4)$$

$$-10 = 2\sqrt{5}\sqrt{x+4}$$

$$\frac{-5}{\sqrt{5}} = \sqrt{x+4}$$

$$\frac{25}{5} = x+4$$

$$x = 5-4$$

$$x = 1$$

 $\mathsf{Ainsi}\left[\mathscr{S} = \{1\} \right]$

4. Commençons par déterminer le domaine de définition de l'inéquation. Pour que les racines soient bien définies, il faut que :

$$x^2 + 9 \geqslant 0$$
 et $x \geqslant 0$

soit $x\geqslant 0$ car $x^2+9\geqslant 0$ pour tout $x\in\mathbb{R}$. Ainsi l'inéquation est définie sur $[0;+\infty[$. Soit $x\in[0;+\infty[$, on a :

$$\sqrt{x^2 + 9} - \sqrt{x} > 0 \iff \sqrt{x^2 + 9} > \sqrt{x} \iff x^2 + 9 > x \iff x^2 - x + 9 > 0.$$

Calculons le discriminant de ce trinôme. On a $\Delta=-35<0$. Ainsi $x^2-x+9>0$ pour tout $x\in\mathbb{R}$. Ainsi $\mathcal{S}=[0;+\infty[$

Exercice 3

1.

$$\begin{cases} u_0 = 3 \\ \forall n \in \mathbb{N} \quad u_{n+1} = \frac{2}{3}u_n - \frac{1}{3} \end{cases}$$

Exprimons u_n en fonction de n:

- On reconnaît une suite arithmético-géométrique.
- $\bullet \ \alpha = \frac{2}{3}\alpha \frac{1}{3} \iff \alpha = -1.$
- Soit $(w_n)_{n\in\mathbb{N}}$ la suite définie par : $\forall n\in\mathbb{N}$ $w_n=u_n+1$. Montrons que la suite (w_n) est géométrique :

$$w_{n+1} = u_{n+1} + 1 = \frac{2}{3}u_n - \frac{1}{3} + 1 = \frac{2}{3}u_n + \frac{2}{3} = \frac{2}{3}(u_n + 1) = \frac{2}{3}w_n$$

donc la suite (w_n) est géométrique de raison $q=\frac{2}{3}$ et de premier terme $w_0=u_0+1=3+1=4$. On sait alors que $\forall n\in\mathbb{N}$ $w_n=w_0\times q^n$ donc $\forall n\in\mathbb{N}$ $w_n=4\left(\frac{2}{3}\right)^n$.

 $\bullet \ \, {\rm Or}, \, \forall n \in \mathbb{N} \quad w_n = u_n + 1 \, \, {\rm donc} \, \, \forall n \in \bar{\mathbb{N}} \quad u_n = w_n - 1.$

Ainsi,
$$\forall n \in \mathbb{N}, u_n = 4\left(\frac{2}{3}\right)^n - 1$$

2.

$$\begin{cases} u_0 = 1 & u_1 = 2 \\ \forall n \in \mathbb{N} & u_{n+2} = 3u_{n+1} + 4u_n \end{cases}$$

Exprimons u_n en fonction de n :

- On reconnaît une suite récurrente linéaire d'ordre 2.
- Son équation caractéristique associée (E) est $r^2=3r+4 \iff r^2-3r-4=0$. On trouve $\Delta=25=5^2>0$ donc (E) admet deux solutions réelles distinctes

$$r_1 = \frac{3-5}{2} = -1$$
 et $r_2 = \frac{3+5}{2} = 4$.

On sait alors qu'il existe λ et μ dans $\mathbb R$ tels que $\forall n \in \mathbb N$ $u_n = \lambda(r_1)^n + \mu(r_2)^n$ i.e. $\forall n \in \mathbb N$ $u_n = \lambda(-1)^n + \mu \times 4^n$. En particulier, pour n = 0, on a $u_0 = 1 = \lambda + \mu$ et pour n = 1, on a $u_1 = 2 = -\lambda + 4\mu$ donc λ et μ vérifient le système

$$\begin{cases} \lambda + \mu = 1 & L_1 \\ -\lambda + 4\mu = 2 & L_2 \end{cases}$$

 L_1+L_2 donne $5\mu=3$ donc $\mu=\frac{3}{5}$ puis L_1 donne $\lambda=1-\mu=1-\frac{3}{5}=\frac{2}{5}$.

 $\text{Ainsi,} \qquad \forall n \in \mathbb{N} \quad u_n = \frac{2}{5}(-1)^n + \frac{3}{5} \times 4^n.$

Exercice 4 Un peu de logique

1. On voit que

$$(A) \Longleftrightarrow (E) \Longleftrightarrow (F) \Longleftrightarrow (G)$$

et

$$(B) \iff (C) \iff (D)$$

- 2. On a:
 - non $(A): \forall a \in \mathbb{R}, \exists x \in \mathbb{R} \text{ tel que } f(x) \neq a$
 - non $(B): \exists x \in \mathbb{R}$ tel que $\forall a \in \mathbb{R}_+, f(x) \neq a$
 - non (C) : $\exists x \in \mathbb{R}, \exists y \in \mathbb{R}$ tel que $f(x) \neq f(y)$.
- 3. On a
 - $(A): (\forall x \in \mathbb{R}, f(x) = 1)$ ou $(\forall x \in \mathbb{R}, f(x) = 4)$.
 - $(B): \exists a \in \mathbb{R}, \exists b \in \mathbb{R} \text{ t.q. } \forall x \in \mathbb{R}, f(x) = a \text{ ou } f(x) = b$
- 4. Soient les deux propositions suivantes :
 - (A) : La fonction f est constante.
 - (B): $\forall x \in \mathbb{R}, f(x+2) = f(x)$.
 - (a) Supposons que la fonction f est constante. Alors pour tout $(x,y) \in \mathbb{R}, f(x) = f(y)$. En particulier, pour tout $x \in \mathbb{R}, f(x+2) = f(x)$. Ainsi $(A) \Longrightarrow (B)$.
 - (b) Soit f la fonction définie par : $\forall x \in \mathbb{R}, f(x) = \sin(\pi x)$. Pour tout $x \in \mathbb{R}$, (comme la fonction sin est 2π -périodique)

$$f(x+2) = \sin(\pi(x+2)) = \sin(\pi x + 2\pi) = \sin(\pi x) = f(x)$$

Ainsi f vérifie bien la proposition (B). La fonction f en revanche n'est pas constante. En effet $f(0) = \sin(0) = 0$ et $f\left(\frac{1}{2}\right) = \sin\left(\frac{\pi}{2}\right) = 1$. On peut donc en conclure que la réciproque $(B) \Longrightarrow (A)$ n'est pas vraie en général car on vient d'exhiber un contre-exemple.

Exercice 5 Une équation fonctionnelle

1. (a) D'après $(\star\star)$ utilisée avec x=y=0, on obtient

$$f(0)f(0) = 0$$
 i.e. $f(0)^2 = 0$ i.e. $f(0) = 0$.

(b) Soit $x \in \mathbb{R}_+$. D'après $(\star\star)$ utilisée avec y=x, on a

$$f(x)^2 = \sqrt{x}f(2x) + \sqrt{x}f(2x) = 2\sqrt{x}f(2x)$$

Et ceci est vrai pour tout $x \in \mathbb{R}_+$.

(c) Soient x et $y \in \mathbb{R}_+^*$. Alors d'après la question précédente

$$f(x)^2 = 2\sqrt{x}f(2x)$$
 et $f(y)^2 = 2\sqrt{y}f(2y)$

ce qui nous donne, comme $\sqrt{x} \neq 0$ et $\sqrt{y} \neq 0$,

$$f(2x) = \frac{f(x)^2}{2\sqrt{x}}$$
 et $f(2y) = \frac{f(y)^2}{2\sqrt{y}}$

En réinjectant dans (**), on obtient

$$f(x)f(y) = \sqrt{y} \cdot \frac{f(x)^2}{2\sqrt{x}} + \sqrt{x} \cdot \frac{f(y)^2}{2\sqrt{y}} = \frac{1}{2\sqrt{xy}} \left(yf(x)^2 + xf(y)^2 \right)$$

(d) Soit $(x,y) \in (\mathbb{R}_+^*)^2$. Alors

$$(\sqrt{y}f(x) - \sqrt{x}f(y))^{2} = yf(x)^{2} + xf(y)^{2} - 2\sqrt{xy}f(x)f(y)$$

$$= 2\sqrt{xy}\left(\frac{1}{2\sqrt{xy}}\left(yf(x)^{2} + xf(y)^{2}\right) - f(x)f(y)\right)$$

$$= 0$$

d'après la question précédente.

(e) Soit $(x,y) \in (\mathbb{R}_+^*)^2$. D'après la question 1.(d),

$$\sqrt{y}f(x) - \sqrt{x}f(y) = 0$$
 i.e. $\sqrt{y}f(x) = \sqrt{x}f(y)$

Comme x et y sont strictement postifs, on peut diviser par \sqrt{xy} cette dernière égalité, et l'on obtient

$$\frac{f(x)}{\sqrt{x}} = \frac{f(y)}{\sqrt{y}}$$

Ceci étant vrai pour tout $(x,y) \in (\mathbb{R}_+^*)^2$, on en déduit que la fonction g est constante sur \mathbb{R}_+^* .

(f) Cette dernière question est plus difficile car c'est à vous de prendre quelques initiatives.

Première étape : Comme la fonction g est constante sur \mathbb{R}_+^* , alors il existe un réel α tel que, pour tout $x \in \mathbb{R}_+^*$, $g(x) = \alpha$. Ainsi

$$\forall x \in \mathbb{R}_+^*, \quad f(x) = \alpha \sqrt{x}$$

Comme $f(0) = 0 = \alpha \cdot \sqrt{0}$, alors on peut finalement écrire que

$$\forall x \in \mathbb{R}_+, \quad f(x) = \alpha \sqrt{x}$$

Deuxième étape : Nous allons ensuite réinjecter ce résultat dans l'égalité $(\star\star)$. On obtient, pour tout $(x,y)\in(\mathbb{R}_+)^2$

$$\alpha\sqrt{x}\cdot\alpha\sqrt{y} = \sqrt{y}\cdot\alpha\sqrt{2x} + \sqrt{x}\cdot\alpha\sqrt{2y}$$

i.e.

$$\alpha^2 \sqrt{xy} = 2\alpha \sqrt{2xy}$$

Comme ceci est vrai pour tout $(x,y) \in (\mathbb{R}_+)^2$, alors en particulier pour x=y=1, cela donne

$$\alpha^2 = 2\alpha\sqrt{2}$$
 i.e. $\alpha(\alpha - 2\sqrt{2}) = 0$

Ainsi $\alpha=0$ ou $\alpha=2\sqrt{2}$. Finalement f est donc bien la fonction nulle ou la fonction $x\in\mathbb{R}_+\longmapsto 2\sqrt{2x}$.

2. La fonction nulle est bien sûr solution du problème. Posons $f: x \in \mathbb{R}_+ \longmapsto 2\sqrt{2x}$. Alors, pour tout $(x,y) \in (\mathbb{R}_+)^2$,

$$\sqrt{y}f(2x) + \sqrt{x}f(2y) = \sqrt{y} \cdot 2\sqrt{4x} + \sqrt{x} \cdot 2\sqrt{4y} = 4\sqrt{4xy} = 8\sqrt{xy} = 2\sqrt{2x} \cdot 2\sqrt{2y}$$

Donc f est bien solution du problème.

Bilan: ce problème admet donc exactement deux solutions, la fonction $x \in \mathbb{R}_+ \longmapsto 2\sqrt{2x}$ et la fonction nulle.

Problème 1 Etude d'une suite récurrente linéaire d'ordre 3

1. (a) $v_0 = u_1 + 2u_0 = -5 + 2 \times 4 = 3$ et $v_1 = u_2 + 2u_1 = 13 + 2 \times (-5) = 3$.

Bilan : $v_0 = 3$ et $v_1 = 3$

(b) $v_{n+2} = u_{n+3} + 2u_{n+2}$. Or, $u_{n+3} = 3u_{n+1} - 2u_n$ donc $v_{n+2} = 3u_{n+1} - 2u_n + 2u_{n+2} = 2u_{n+2} + 4u_{n+1} - u_{n+1} - 2u_n = 2(u_{n+2} + 2u_{n+1}) - (u_{n+1} + 2u_n) = 2v_{n+1} - v_n$.

$$\begin{split} 2(u_{n+2}+2u_{n+1})-(u_{n+1}+2u_n) &= 2v_{n+1}-v_n.\\ \mathbf{Bilan:} \ \forall n \in \mathbb{N} \quad v_{n+2} &= 2v_{n+1}-v_n \end{split}$$

(c) La suite (v_n) est une suite récurrente linéaire d'ordre 2. Son équation caractéristique associée (E) est $r^2=2r-1\iff r^2-2r+1=0\iff (r-1)^2=0$. Donc (E) admet une unique solution $r_0=1$. On sait alors qu'il existe λ et μ dans $\mathbb R$ tels que $\forall n\in\mathbb N$ $v_n=(\lambda+\mu n)(r_0)^n$ i.e. $\forall n\in\mathbb N$ $v_n=\lambda+\mu n$. En particulier, pour n=0, on a $v_0=3=\lambda$ et pour n=1, on a $v_1=3=\lambda+\mu$ donc $\lambda=3$ et $\mu=0$. Donc $\forall n\in\mathbb N$ $v_n=3$.

Bilan: $\forall n \in \mathbb{N} \quad v_n = 3$

- (d) On a montré à la question précédente que pour tout $n \in \mathbb{N}$, $v_n = 3$ donc $(v_n)_{n \in \mathbb{N}}$ est bien une suite constante.
- (e) Or, pour tout n dans \mathbb{N} , on a $v_n=u_{n+1}+2u_n$ et $v_n=3$ donc $3=u_{n+1}+2u_n$ donc $u_{n+1}=-2u_n+3$.

Bilan: $\forall n \in \mathbb{N} \quad u_{n+1} = -2u_n + 3.$

(f) La suite (u_n) est une suite arithmético-géométrique. On cherche α tel que $\alpha=-2\alpha+3$ et on trouve $\alpha=1$. Soit $(w_n)_{n\in\mathbb{N}}$ la suite définie par : $\forall n\in\mathbb{N}$ $w_n=u_n-1$. Montrons que la suite (w_n) est géométrique : $w_{n+1}=u_{n+1}-1=-2u_n+3-1=-2u_n+2=-2(u_n-1)=-2w_n$. Donc la suite (w_n) est géométrique de raison q=-2 et de premier terme $w_0=u_0-1=4-1=3$ donc pour tout n dans \mathbb{N} , $w_n=3(-2)^n$. Or, $w_n=u_n-1$ donc $u_n=w_n+1$ et donc $u_n=3(-2)^n+1$.

Bilan: $\forall n \in \mathbb{N} \quad u_n = 3(-2)^n + 1$

(g)

$$\sum_{k=0}^{n} u_k = \sum_{k=0}^{n} (3(-2)^k + 1) = 3\sum_{k=0}^{n} (-2)^k + \sum_{k=0}^{n} 1 = 3\frac{1 - (-2)^{n+1}}{1 - (-2)} + (n+1) = 1 - (-2)^{n+1} + n + 1$$

Bilan: $\sum_{k=0}^{n} u_k = n + 2 - (-2)^{n+1}.$

2. (a) Montrons par récurrence sur n que pour tout n dans \mathbb{N} , $t_{n+2}-2t_{n+1}+t_n=0$:

Notons $\mathcal{P}(n)$ la proposition : $\langle t_{n+2} - 2t_{n+1} + t_n = 0. \rangle$

Initialisation (n=0)

On a $t_0 = u_0 - (-2)^0 = 1$, $t_1 = u_1 - (-2)^1 = 0$ et $t_2 = u_2 - (-2)^2 = -1$. Ainsi $t_2 - 2t_1 + t_0 = -1 + 2 \times 0 + 1 = 0$. Ainsi $\mathcal{P}(0)$ est vraie.

Hérédité Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$ vraie et montrons que $\mathcal{P}(n+1)$ est vraie.

On doit donc montrer que $t_{n+3} - 2t_{n+2} + t_{n+1} = 0$.

$$\begin{split} t_{n+3} - 2t_{n+2} + t_{n+1} &= t_{n+3} - 2(2t_{n+1} - t_n) + t_{n+1}, \qquad \text{par hypothèse de récurrence} \\ &= t_{n+3} - 3t_{n+1} + 2t_n \\ &= u_{n+3} - (-2)^{n+3} - 3(u_{n+1} - (-2)^{n+1}) + 2(u_n - (-2)^n) \\ &= u_{n+3} + 8(-2)^n - 3u_{n+1} - 6(-2)^n + 2u_n - 2(-2)^n \\ &= u_{n+3} - 3u_{n+1} + 2u_n \\ &= 0, \qquad \text{par définition de la suite } (u_n). \end{split}$$

Ainsi $\mathcal{P}(n+1)$ est vraie et la propriété est héréditaire.

Conclusion D'après la principe de récurrence, la propriété $\mathcal{P}(n)$ est vraie pour tout n, à savoir :

$$t_{n+2} - 2t_{n+1} + t_n = 0.$$

(b) La suite $(t_n)_n$ étant une suite récurrence linéaire d'ordre 2, on calcule les racines de son équation caractéristique.

(E):
$$r^2 - 2r + 1 = 0 \iff (r-1)^2 = 0.$$

(E) possède donc une racine double $r_0=1$. Le terme général de la suite a donc pour expression :

$$t_n = (\lambda + n\mu)1^n = \lambda + n\mu \text{ avec } \lambda, \mu \in \mathbb{R}.$$

Déterminons les réels λ et μ , on a $t_0=1=\lambda$ et $t_1=0=\lambda+\mu$. Ainsi $\mu=-\lambda=-1$. On a donc $\forall n\in\mathbb{N}, t_n=1-n$.

- (c) On sait que $u_n = t_n + (-2)^n$. Ainsi, $\forall n \in \mathbb{N}, u_n = 1 n + (-2)^n$.
- (d) Calculons la somme, on a :

$$\begin{split} \sum_{k=0}^n u_k &= \sum_{k=0}^n (1-k+(-2)^k) \\ &= \sum_{k=0}^n 1 - \sum_{k=0}^n k + \sum_{k=0}^n (-2)^k, \qquad \text{par lin\'earit\'e de la somme} \\ &= n+1 - \frac{n(n+1)}{2} + \frac{1-(-2)^{n+1}}{1-(-2)} \\ &= \frac{-n^2+n+2}{2} + \frac{1-(-2)^{n+1}}{6} \\ &= \frac{-3n^2+3n+8+(-2)^{n+2}}{6} \end{split}$$

On obtient donc $\sum_{k=0}^{n} u_k = \frac{-3n^2 + 3n + 8 + (-2)^{n+2}}{6}.$

Problème 2

1. Montrons par récurrence sur n que pour tout n dans \mathbb{N} , u_n existe et $u_n\geqslant 1$:

Notons $\mathcal{P}(n)$ la proposition : « u_n existe et $u_n \geqslant 1$.»

- Initialisation (n = 0):
 - $u_0 = 4$ donc u_0 existe et comme $4 \ge 1$, on a bien $u_0 \ge 1$ donc $\mathcal{P}(0)$ est vraie.
- Hérédité :

Soit $n \in \mathbb{N}$. Supposons que $\mathcal{P}(n)$ soit vraie. Montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, $u_n\geqslant 1$ donc $u_n+1\geqslant 2$ donc $u_n+1\neq 0$ donc $u_{n+1}=\frac{4u_n-2}{u_n+1}$ existe bien. D'autre part,

$$u_{n+1} - 1 = \frac{4u_n - 2 - u_n - 1}{u_n + 1} = \frac{3u_n - 3}{u_n + 1} = \frac{3(u_n - 1)}{u_n + 1}.$$

Par hypothèse de récurrence, $u_n\geqslant 1$ donc $u_n-1\geqslant 0$. Or $3\geqslant 0$ et $u_n+1\geqslant 2>0$ donc $\frac{3(u_n-1)}{u_n+1}\geqslant 0$ donc $u_{n+1}-1\geqslant 0$ i.e. $u_{n+1}\geqslant 1$. Donc $\mathcal{P}(n+1)$ est vraie. Ainsi, la proposition $\mathcal{P}(n)$ est héréditaire.

• Conclusion : d'après le principe de récurrence, la proposition $\mathcal{P}(n)$ est vraie pour tout n dans \mathbb{N} , à savoir :

pour tout
$$n$$
 dans \mathbb{N} , u_n existe et $u_n \geqslant 1$

2. Montrons que la suite (u_n) n'est ni arithmétique, ni géométrique :

$$u_0 = 4 \text{ donc } u_1 = \frac{4u_0 - 2}{u_0 + 1} = \frac{14}{5} \text{ donc } u_2 = \frac{4u_1 - 2}{u_1 + 1} = \frac{4 \times \frac{14}{5} - 2}{\frac{14}{5} + 1} = \frac{46}{19}.$$

- $u_1 u_0 = \frac{14}{5} 4 = -\frac{6}{5}$ et $u_2 u_1 = \frac{46}{19} \frac{14}{5} = -\frac{36}{95}$ donc $u_2 u_1 \neq u_1 u_2$ donc la suite (u_n) n'est pas arithmétique.
- $\frac{u_1}{u_0} = \frac{\frac{14}{5}}{4} = \frac{7}{10}$ et $\frac{u_2}{u_1} = \frac{\frac{46}{19}}{\frac{14}{5}} = \frac{115}{133}$ donc $\frac{u_2}{u_1} \neq \frac{u_1}{u_0}$ donc la suite (u_n) n'est pas géométrique.

Bilan : la suite (u_n) n'est ni arithmétique, ni géométrique

3. Montrons par récurrence sur n que : $\forall n \in \mathbb{N} \quad u_n \neq 2$. Pour $n \in \mathbb{N}$, notons $\mathcal{P}(n)$ la proposition : « $u_n \neq 2$ ».

Initialisation (n=0):

 $u_0 = 4$ et $4 \neq 2$, donc $u_0 \neq 2$ donc $\mathcal{P}(0)$ est vraie.

Hérédité Soit $n \in \mathbb{N}$. Supposons que $\mathcal{P}(n)$ soit vraie. Montrons que $\mathcal{P}(n+1)$ est vraie.

Raisonnons par l'absurde et supposons que $u_{n+1}=2$. Alors $\frac{4u_n-2}{u_n+1}=2$ donc $4u_n-2=2u_n+2$ donc $2u_n=4$ donc $u_n=2$. Or, par hypothèse de récurrence, on a $u_n\neq 2$: absurde! Donc $u_{n+1}\neq 2$. Donc $\mathcal{P}(n+1)$ est vraie. Ainsi, la proposition $\mathcal{P}(n)$ est héréditaire.

Conclusion d'après le principe de récurrence, la proposition $\mathcal{P}(n)$ est vraie pour tout n dans \mathbb{N} , à savoir :

$$\forall n \in \mathbb{N} \quad u_n \neq 2$$

- 4. (a) Justifions brièvement que la suite (w_n) est bien définie : En effet, on vient de montrer que $\forall n \in \mathbb{N}$ $u_n \neq 2$, donc la suite (w_n) est bien définie
 - (b) Montrons que la suite (w_n) est géométrique :

$$w_{n+1} = \frac{u_{n+1} - 1}{u_{n+1} - 2} = \frac{\frac{4u_n - 2}{u_n + 1} - 1}{\frac{4u_n - 2}{u_n + 1} - 2} = \frac{4u_n - 2 - u_n - 1}{4u_n - 2 - 2u_n - 2} = \frac{3u_n - 3}{2u_n - 4} = \frac{3(u_n - 1)}{2(u_n - 2)} = \frac{3}{2}w_n$$

Bilan: la suite (w_n) est géométrique de raison $q=\frac{3}{2}$ et de premier terme $w_0=\frac{u_0-1}{u_0-2}=\frac{4-1}{4-2}=\frac{3}{2}$

(c) Exprimons w_n en fonction de n: Par conséquent, pour tout n dans \mathbb{N} : $w_n = w_0 \times q^n = \frac{3}{2} \times \left(\frac{3}{2}\right)^n$.

Bilan : $\forall n \in \mathbb{N} \quad w_n = \left(\frac{3}{2}\right)^{n+1}$

5. Montrons que : $\forall n \in \mathbb{N}$ $w_n \neq 1$:

Soit n dans \mathbb{N} . Raisonnons par l'absurde et supposons que $w_n=1$. Alors $\frac{u_n-1}{u_n-2}=1$ donc $u_n-1=u_n-2$ et donc -1=-2: absurde! Donc $w_n \neq 1$.

Bilan: $\forall n \in \mathbb{N} \quad w_n \neq 1$

Exprimons u_n en fonction de w_n :

On sait que $w_n=\frac{u_n-1}{u_n-2}$ donc $w_n(u_n-2)=u_n-1$ donc $w_nu_n-2w_n=u_n-1$ donc $w_nu_n-u_n=2w_n-1$ donc $(w_n-1)u_n=2w_n-1$. Or, d'après la question précédente, on sait que $\forall n\in\mathbb{N}$ $w_n\neq 1$ donc $w_n-1\neq 0$ donc on peut écrire que :

$$\forall n \in \mathbb{N} \qquad u_n = \frac{2w_n - 1}{w_n - 1}$$

6. Expression de u_n en fonction de n: D'après **4)**, on sait que $w_n=\left(\frac{3}{2}\right)^{n+1}$ et d'après **5)**, on sait que $u_n=\frac{2w_n-1}{w_n-1}$ donc :

$$\forall n \in \mathbb{N} \qquad u_n = \frac{2 \times \left(\frac{3}{2}\right)^{n+1} - 1}{\left(\frac{3}{2}\right)^{n+1} - 1}$$