(C) M. Fontaine

Devoir maison nº 4

Ce devoir comprend deux exercices et un problème.

Exercice 1 Factorisation de polynômes

Pour tout $x \in \mathbb{R}$, on considère le polynôme $P(x) = 6x^4 + 7x^3 - 3x^2 - 3x + 1$.

- 1. Déterminer une racine évidente de P.
- 2. Factoriser au maximum le polynôme P
- 3. Résoudre l'inéquation suivante :

(I)
$$6e^{3x} + 7e^{2x} - 3e^x - 3 + e^{-x} \le 0$$
.

Exercice 2

Soit $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ les suites définies par :

$$\forall n \in \mathbb{N}^*, \quad u_n = \sum_{k=1}^n \frac{k}{n^2} \quad \text{ et } \quad v_n = \sum_{k=1}^n \sin\left(\frac{k}{n^2}\right)$$

- 1. Montrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ converge vers $\frac{1}{2}$.
- 2. On considère les trois fonctions suivantes :

$$f: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & x-\sin(x) \end{array} \right., \quad g: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \frac{x^2}{2}-1+\cos(x) \end{array} \right. \quad \text{et} \quad h: \left\{ \begin{array}{ccc} \mathbb{R} & \longrightarrow & \mathbb{R} \\ x & \longmapsto & -x+\frac{x^3}{6}+\sin(x) \end{array} \right.$$

- (a) En étudiant les variations de chacune de ces fonctions, montrer qu'elles prennent uniquement des valeurs positives ou nulles sur l'intervalle $[0, +\infty[$.
- (b) Justifier que pour tout entier naturel n non nul, $\sum_{k=1}^{n} k^3 \leqslant n^4$.
- (c) Déduire des guestions précédentes que pour tout entier naturel n non nul :

$$u_n - \frac{1}{6n^2} \leqslant v_n \leqslant u_n$$

(d) Conclure que la suite $(v_n)_{n\in\mathbb{N}^*}$ converge et déterminer sa limite.

Problème 1

Partie A : Soient deux réels a>0 et b>0. On définit $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ par $u_0=a,v_0=b$ et

$$\forall n \in \mathbb{N}, \quad u_{n+1} = \sqrt{u_n v_n} \quad \text{ et } \quad v_{n+1} = \frac{1}{2} (u_n + v_n).$$

- 1. Montrer que : $\forall n \in \mathbb{N}, u_n > 0$ et $v_n > 0$.
- 2. (a) Montrer que : $\forall x \in \mathbb{R}_+^*, \ \forall y \in \mathbb{R}_+^*, \ \sqrt{xy} \leqslant \frac{x+y}{2}$.
 - (b) Montrer que : $\forall n \in \mathbb{N}^*, u_n \leqslant v_n$.
- 3. (a) Montrer que la suite $(u_n)_{n\geqslant 1}$ est croissante, et que la suite $(v_n)_{n\geqslant 1}$ est décroissante.
 - (b) En déduire que $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$ convergent et qu'elles ont la même limite. On notera M(a,b) leur limite commune.
- 4. (a) Justifier que $u_1 \leqslant M(a,b) \leqslant v_1$.
 - (b) En déduire que

$$0\leqslant M(a,b)-\sqrt{ab}\leqslant \frac{(\sqrt{a}-\sqrt{b})^2}{2}$$

(c) Déterminer alors la valeur de M(a,b) dans le cas où a=b.

Partie B: Soient trois réels a > 0, b > 0 et $\lambda > 0$.

1. Dans cette question, on considère les quatre suites $(u_n)_{n\geqslant 0}$ et $(v_n)_{n\geqslant 0}$, $(u_n')_{n\geqslant 0}$ et $(v_n')_{n\geqslant 0}$ définies

$$u_0 = a, \ v_0 = b, \ u_0' = b, \ v_0' = a \quad \text{et} \quad \forall n \in \mathbb{N}, \quad \left\{ \begin{array}{ll} u_{n+1} = \sqrt{u_n v_n} & \text{et} \quad v_{n+1} = \frac{u_n + v_n}{2} \\ u_{n+1}' = \sqrt{u_n' v_n'} & \text{et} \quad v_{n+1}' = \frac{u_n' + v_n'}{2} \end{array} \right.$$

- (a) Montrer que, pour tout $n \in \mathbb{N}^*$, $u'_n = u_n$ et $v'_n = v_n$.
- (b) En déduire que M(b, a) = M(a, b).
- 2. Dans cette question, on considère les quatre suites $(u_n)_{n\geq 0}$ et $(v_n)_{n\geq 0}$, $(u'_n)_{n\geq 0}$ et $(v'_n)_{n\geq 0}$ définies

$$u_0 = a, \ v_0 = b, \ u_0' = \lambda a, \ v_0' = \lambda b \quad \text{et} \quad \forall n \in \mathbb{N}, \quad \left\{ \begin{array}{ll} u_{n+1} = \sqrt{u_n v_n} & \text{et} \quad v_{n+1} = \frac{u_n + v_n}{2} \\ u_{n+1}' = \sqrt{u_n' v_n'} & \text{et} \quad v_{n+1}' = \frac{u_n' + v_n'}{2} \end{array} \right.$$

- (a) Montrer que, pour tout $n \in \mathbb{N}$, $u'_n = \lambda u_n$ et $v'_n = \lambda v_n$.
- (b) En déduire l'expression de $M(\lambda a, \lambda b)$ en fonction de M(a, b).
- 3. A l'aide des deux questions précédentes, déterminer l'expression de $M\left(\frac{1}{a},\frac{1}{b}\right)$ en fonction de M(a,b).