Corrigé du Devoir maison nº 3

Problème 1

1. $P^3=I_3$. Ainsi, on a $P\times P^2=I_3$ donc la matrice P est inversible d'inverse $P^{-1}=P^2=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$.

2. On a:

$$P^{-1}AP = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & 1 & 2 \\ 2 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} = L$$

On a bien $P^{-1}AP = L$

3. (a) Montrons le résultat par récurrence et pour tout $n \in \mathbb{N}$, notons $\mathcal{P}(n)$ la proposition : « $P^{-1}A^nP = L^n$ » . Initialisation (n=0) :

$$L^0 = I$$
 et $P^{-1}A^0P = P^{-1}IP = P^{-1}P = I$

donc $\mathcal{P}(0)$ est vraie.

Hérédité: Soit n un entier quelconque dans \mathbb{N} . Supposons $\mathcal{P}(n)$ vraie et montrons que $\mathcal{P}(n+1)$ est vraie. On a :

$$\begin{split} L^{n+1} &= L^n \times L \\ &= P^{-1}A^nP \times P^{-1}AP \\ &= P^{-1}A^nIAP \\ &= P^{-1}A^{n+1}P \end{split}$$

donc $\mathcal{P}(n+1)$ est vraie.

Conclusion : D'après le principe de récurrence, la proposition $\mathcal{P}(n)$ est vraie pour tout n dans \mathbb{N} , à savoir : $L^n = P^{-1}A^nP$.

(b) On a:

$$J = L - I = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

Ainsi,

$$J^{2} = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$J^{3} = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0_{3}.$$

(c) Montrons le résultat par récurrence et pour tout $n \in \mathbb{N} \setminus \{0,1\}$, posons $\mathcal{P}(n)$: « $L^n = I + nJ + \frac{n(n-1)}{2}J^2$ ».

Initialisation
$$(n=2)$$
 On a $L^2=(I+J)^2=(I+J)\times (I+J)=I^2+J+J+J^2=I+2J+J^2$. Or $I+2J+\frac{2(2-1)}{2}J^2=I+2J+J^2$. On a donc bien

$$L^2 = I + 2J + J^2$$

Ainsi $\mathcal{P}(2)$ est vraie et la propriété est initialisée.

Hérédité Soit $n \ge 2$. Supposons $\mathcal{P}(n)$ vraie et montrons que $\mathcal{P}(n+1)$ est vraie. On a :

$$\begin{split} L^{n+1} &= L \times L^n \\ &= (I+J) \times (I+nJ + \frac{n(n-1)}{2}J^2 \quad \text{ par hypothèse de récurrence} \\ &= I+nJ + \frac{n(n-1)}{2}J^2 + J + nJ^2 + \frac{n(n-1)}{2}J^2 \\ &= I + (n+1)J + \left(\frac{n(n-1)}{2} + \frac{2n}{2}\right)J^2 \quad \text{ car } J^2 = 0_3 \\ &= I + (n+1)J + \frac{n(n+1)}{2}J^2. \end{split}$$

Ainsi $\mathcal{P}(n+1)$ est vraie et la propriété est héréditaire.

Conclusion La propriété étant initialisée et héréditaire, par le principe de récurrence, $\mathcal{P}(n)$ est vraie pour tout $n \geqslant 2$, à savoir :

$$L^{n} = I + nJ + \frac{n(n-1)}{2}J^{2}.$$

(d) On a:

$$L^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + n \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} + \frac{n(n-1)}{2} \begin{pmatrix} 0 & 0 & 4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 2n & 0 \\ 0 & 0 & 2n \\ 0 & 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 2n(n-1) \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & 2n & 2n(n-1) \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix}$$

Pour n=0, on vérifie que la formule obtenue donne bien I_3 et pour n=1, on vérifie que la formule obtenue donne bien L.

(e) Dès lors :

$$\begin{split} A^n &= PL^nQ \\ &= \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2n & 2n(n-1) \\ 0 & 1 & 2n \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 2n & 2n(n-1) \\ 0 & 1 & 2n \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \\ &= \begin{pmatrix} 1 & 0 & 0 \\ 2n(n-1) & 1 & 2n \\ 2n & 0 & 1 \end{pmatrix} \end{split}$$

4. (a) La suite $(u_n)_{n\in\mathbb{N}}$ est une suite constante égale à 1. Pour tout $n\in\mathbb{N}$, on a $u_n=1$

(b) On a:

$$AX_n = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 2 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ v_n \\ w_n \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ v_n + 2w_n \\ 2 + w_n \end{pmatrix}$$
$$= \begin{pmatrix} 1 \\ v_{n+1} \\ w_{n+1} \end{pmatrix}$$
$$= X_{n+1}.$$

(c) Montrons le résultat par récurrence et pour tout $n \in \mathbb{N}^*$, notons $\mathcal{P}(n)$ la proposition : « $X_n = A^{n-1}X_1 \gg 1$. Initialisation (n = 1) :

$$A^0 X_1 = I X_1 = X_1$$

donc $\mathcal{P}(1)$ est vraie.

Hérédité : Soit $n \ge 1$. Supposons $\mathcal{P}(n)$ vraie et montrons que $\mathcal{P}(n+1)$ est vraie. On a :

$$X_{n+1} = AX_n$$

$$= A \times A^{n-1}X_1$$

$$= A^n X_1$$

donc $\mathcal{P}(n+1)$ est vraie.

Conclusion : D'après le principe de récurrence, la proposition $\mathcal{P}(n)$ est vraie pour tout n dans \mathbb{N}^* , à savoir : $X_n = A^{n-1}X_1$.

(d) On a:

$$\begin{pmatrix} 1 \\ v_n \\ w_n \end{pmatrix} = X_n = A^{n-1} X_1$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 2(n-1)(n-2) & 1 & 2(n-1) \\ 2(n-1) & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 2(n-1)(n-2) + 4(n-1) \\ 2(n-1) + 2 \end{pmatrix}$$

$$= \begin{pmatrix} 1 \\ 2n(n-1) \\ 2n \end{pmatrix}$$

On a donc bien pour tout $n\geqslant 1$, $v_n=2n(n-1)$ et $w_n=2n(n-1)$

Exercice 1

1. Calculons cette somme double :

$$\begin{split} \sum_{1\leqslant i,j\leqslant n} (x_iy_j - x_jy_i)^2 &= \sum_{i=1}^n \sum_{j=1}^n \left(x_iy_j - x_jy_i \right)^2 \\ &= \sum_{i=1}^n \sum_{j=1}^n \left((x_iy_j)^2 - 2x_iy_jx_jy_i + (x_jy_i)^2 \right) \\ &= \sum_{i=1}^n \sum_{j=1}^n \left(x_iy_j \right)^2 - 2\sum_{i=1}^n \sum_{j=1}^n x_iy_ix_jy_j + \sum_{i=1}^n \sum_{j=1}^n \left(x_jy_i \right)^2 \quad \text{par linéarité de la somme} \\ &= \sum_{i=1}^n \sum_{j=1}^n x_i^2y_j^2 - 2\sum_{i=1}^n x_iy_i \sum_{j=1}^n x_jy_j + \sum_{i=1}^n \sum_{j=1}^n x_j^2y_i^2 \\ &= \sum_{i=1}^n x_i^2 \sum_{j=1}^n y_j^2 - 2\sum_{i=1}^n x_iy_i \sum_{j=1}^n x_jy_j + \sum_{i=1}^n y_i^2 \sum_{j=1}^n x_j^2 \\ &= \sum_{k=1}^n x_k^2 \sum_{k=1}^n y_k^2 - 2\sum_{k=1}^n x_ky_k \sum_{k=1}^n x_ky_k + \sum_{k=1}^n y_k^2 \sum_{k=1}^n x_k^2 \\ &= 2\left(\sum_{k=1}^n x_k^2\right) \left(\sum_{k=1}^n y_k^2\right) - 2\left(\sum_{k=1}^n x_ky_k\right)^2 \end{split}$$

On a bien obtenu l'égalité demandée.

- 2. En tant que somme de nombres positifs ou nuls, $\sum_{1\leqslant i,j\leqslant n} (x_iy_j-x_jy_i)^2\geqslant 0$
- 3. Les deux questions précédentes assurent que

$$2\left(\sum_{k=1}^{n} x_{k}^{2}\right) \left(\sum_{k=1}^{n} y_{k}^{2}\right) - 2\left(\sum_{k=1}^{n} x_{k} y_{k}\right)^{2} \geqslant 0$$

En divisant par 2 > 0, on a donc :

$$\left(\sum_{k=1}^{n} x_k y_k\right)^2 \leqslant \left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} y_k^2\right)$$

Or ces deux nombres sont positifs, donc par croissance de la fonction carré sur \mathbb{R}_+ on a :

$$\sqrt{\left(\sum_{k=1}^{n} x_k y_k\right)^2} \leqslant \sqrt{\left(\sum_{k=1}^{n} x_k^2\right) \left(\sum_{k=1}^{n} y_k^2\right)}$$

On a donc bien montré l'inégalité de Cauchy-Schwarz : $\left| \sum_{k=1}^n x_k y_k \right| \leqslant \sqrt{\sum_{k=1}^n x_k^2} \sqrt{\sum_{k=1}^n y_k^2}$