Corrigé du DM nº 2

Exercice 1 Questions indépendantes

1. La fonction g est de la forme \sqrt{A} . Pour que g soit bien définie, il faut que $A \geqslant 0$. Ainsi on résout l'inéquation suivante

$$|x+1|-5\geqslant 0 \Leftrightarrow |x+1|\geqslant 5 \Leftrightarrow x+1\geqslant 5 \text{ ou } x+1\leqslant -5 \Leftrightarrow x\geqslant 4 \text{ ou } x\leqslant -6.$$

Ainsi $\mathcal{D}_q =]-\infty; -6] \cup [4; +\infty[.$

2. On commence par déterminer le domaine de définition de l'équation noté \mathcal{D} . Pour $x \in \mathcal{D}$, il faut qu'il soit solution des 4 inéquations suivantes.

$$5x-3>0$$
, $3x-2>0$, $x-1>0$, $2x+1>0$.

Ainsi $\mathcal{D} =]1; +\infty[$.

On regroupe ensuite les logarithmes ensemble de chaque côté. On obtient :

$$\ln((5x-3)(3x-2)) = \ln((x-1)(2x+1)).$$

Cette équation est équivalente à :

$$(5x-3)(3x-2) = (x-1)(2x+1).$$

On a alors:

$$15x^2 - 10x - 9x + 6 = 2x^2 + x - 2x - 1 \iff 13x^2 - 18x + 7 = 0.$$

On calcule le discriminant de ce polynôme de degré 2, on obtient $\Delta = -40 < 0$. Ainsi $\mathscr{S} = \emptyset$.

3. Le domaine de cette inéquation est \mathbb{R} . On a :

$$ee^{x^2 - 3x} \le e^2 \iff 1 + x^2 - 3x \le 2 \iff x^2 - 3x - 1 \le 0.$$

On dresse le tableau de signes de ce polynôme de degré 2.

x	$-\infty$		$\frac{3-\sqrt{13}}{2}$		$\frac{3+\sqrt{13}}{2}$		$+\infty$
$x^2 - 3x - 3$		+	0	-	0	+	

Ainsi
$$\mathscr{S} = \left[\frac{3 - \sqrt{13}}{2}; \frac{3 + \sqrt{13}}{2} \right].$$

Problème 1

1. (a) La fonction g est dérivable sur \mathbb{R} comme somme de fonctions dérivables sur \mathbb{R} . On a pour $x \in \mathbb{R}$,

$$g'(x) = e^x + xe^x - e^x = xe^x.$$

Pour tout $x \in \mathbb{R}$, $e^x > 0$ donc g'(x) > 0 pour x > 0 et $g'(x) \leqslant 0$ pour $x \leqslant 0$. Ainsi la fonction g est $decroissante sur <math>-\infty$, 0 et croissante sur 0; 0 et croissante sur 0; 0.

(b) La fonction g étant décroissante sur $]-\infty;0]$ et croissante sur $[0;+\infty[$, elle atteint son minimum pour x=0. Or g(0)=0 donc $\forall x\in\mathbb{R},\ g(x)\geqslant 0$. Ainsi la fonction g est $[0;+\infty[$, elle atteint son minimum pour x=0.

(c) On sait que $\lim_{x\to +\infty} x \mathrm{e}^x = +\infty$ et que $\lim_{x\to +\infty} -\mathrm{e}^x = -\infty$. Nous sommes donc a priori devant une forme indéterminée. Factorisons par le terme prépondérant :

$$g(x) = e^x(x - 1 + \frac{1}{e^x}).$$

On a $\lim_{x\to +\infty}\frac{1}{\mathrm{e}^x}=0$ et donc $\lim_{x\to +\infty}x-1+\frac{1}{\mathrm{e}^x}=+\infty$ ainsi par produit $\lim_{x\to +\infty}g(x)=+\infty$. On sait que $\lim_{x\to -\infty}\mathrm{e}^x=0$ et que $\lim_{x\to -\infty}x\mathrm{e}^x=0$ par croissance comparée. Ainsi $\lim_{x\to -\infty}g(x)=1$.

2. (a) La fonction f est de la forme $\ln(u)$. Pour qu'elle soit définie, il faut que u>0, c'est à dire qu'il faut $\frac{\mathrm{e}^x-1}{r}>0$. Etablissons le tableau de signe de ce quotient :

x	$-\infty$		0		$+\infty$
$e^x - 1$		_	0	+	
x		_	0	+	
$\frac{e^x - 1}{x}$		+		+	

On en déduit que $\frac{\mathrm{e}^x-1}{x}>0\iff x\neq 0$. Ainsi $\mathcal{D}_f=\mathbb{R}^*$

(b) Etudions la limite de f au voisinage de $+\infty$. On a pour $x \neq 0$, $\frac{\mathrm{e}^x - 1}{x} = \frac{\mathrm{e}^x}{x} - \frac{1}{x}$, or $\lim_{x \to +\infty} \frac{1}{x} = 0$ et $\lim_{x \to +\infty} \frac{\mathrm{e}^x}{x} = +\infty$ par croissance comparée.

Ainsi $\lim_{x\to +\infty}\frac{\mathrm{e}^x-1}{x}=+\infty$. De plus, on sait que $\lim_{x\to +\infty}\ln(x)=+\infty$ donc par composée de limites, on obtient que

Etudions la limite de f au voisinage de $-\infty$.

On sait que $\lim_{x\to -\infty} \mathrm{e}^x - 1 = -1$ et que $\lim_{x\to -\infty} x = -\infty$. Ainsi par quotient, on a $\lim_{x\to -\infty} \frac{\mathrm{e}^x - 1}{x} = 0$. De plus, $\lim_{x \to 0} \ln(x) = -\infty$, on en conclut, par composée de limites que $\lim_{x \to -\infty} f(x) = -\infty$

Etudions la limite de f au voisinage de 0. A priori, $\lim_{x\to 0} \frac{\mathrm{e}^x-1}{x}$ est une forme indéterminée mais on peut montrer que $\lim_{x\to 0} \frac{\mathrm{e}^x-1}{x}=1$ en utilisant les taux d'accroissement. En effet,

$$\frac{e^x - 1}{x} = \frac{e^x - e^0}{x - 0}$$

On reconnaît le taux d'accroissement de la fonction exponentielle en 0. La fonction exp est dérivable en 0 donc $\lim_{x \to 0} \frac{e^x - e^0}{x - 0} = e^0 = 1.$

De plus, $\ln(1)=0$ donc par composée de limites, on a $\underbrace{\overline{\lim}_{x\to 0}}f(x)=0$.

(c) Pour $x \in \mathbb{R}^*$, $x \mapsto \frac{\mathrm{e}^x - 1}{x}$ est dérivable et à valeurs dans \mathbb{R}_+^* , de plus $x \mapsto \ln(x)$ est dérivable sur \mathbb{R}_+^* donc f est dérivable sur \mathbb{R}^* comme composée de fonctions dérivables.

Dérivons la fonction f. Elle est de la forme $\ln(u)$ avec $u(x) = \frac{e^x - 1}{x}$. On a pour $x \in \mathbb{R}^*$, $u'(x) = \frac{e^x \times x - (e^x - 1)}{x^2} = \frac{e^x \times x - (e^x - 1)}{x^2}$ $\frac{x\mathrm{e}^x-\mathrm{e}^x+1}{x^2}$. Ainsi pour $x\in\mathbb{R}^*$,

$$f'(x) = \frac{\frac{xe^x - e^x + 1}{x^2}}{\frac{e^x - 1}{x}} = \frac{g(x)}{x^2} \times \frac{x}{e^x - 1} = \frac{g(x)}{x(e^x - 1)}.$$

Etudions le signe de ce quotient et déduisons-en les variations de f.

x	$-\infty$		()	$+\infty$
$e^x - 1$		_	() +	
x		_	() +	
$x(e^x - 1)$		+		+	
g(x)	+				
f'(x)		+		+	
Variations de f	$-\infty$, 0	0	$+\infty$
Signe de $f(x)$		_		+	

(d) Soit $x \in \mathcal{D}_f$,

$$f(x) - x = \ln\left(\frac{e^x - 1}{x}\right) - x = \ln\left(\frac{e^x - 1}{x}\right) - \ln(e^x)$$
$$= \ln\left(\frac{\frac{e^x - 1}{x}}{e^x}\right) = \ln\left(\frac{e^x - 1}{xe^x}\right) = \ln\left(\frac{e^x (1 - e^{-x})}{e^x \times x}\right)$$
$$= \ln\left(\frac{1 - e^{-x}}{x}\right) = \ln\left(\frac{e^{-x} - 1}{-x}\right) = f(-x).$$

 $\begin{array}{l} \operatorname{Pour} \ x \in] - \infty; 0 [\text{, } -x > 0 \ \operatorname{donc} \ f(-x) > 0 \ \operatorname{ainsi} \ f(x) - x > 0. \\ \operatorname{Pour} \ x \in]0; + \infty [\text{, } -x < 0 \ \operatorname{donc} \ f(-x) < 0 \ \operatorname{ainsi} \ f(x) - x < 0 \end{array}$

(a) Montrons le résultat par récurrence. On pose pour $n \in \mathbb{N}$, $\mathcal{P}(n)$: « $u_n > 0$ ».

Initialisation (n=0) On a $u_0 > 0$ donc $\mathcal{P}(0)$ est vraie.

Hérédité Soit $n \in \mathbb{N}$, supposons $\mathcal{P}(n)$ vraie et montrons que $\mathcal{P}(n+1)$ est vraie.

On sait par hypothèse de récurrence que $u_n > 0$ or f(x) > 0 pour x > 0 d'après la question 2.(c). Ainsi $u_{n+1} = f(u_n) > 0$. $\mathcal{P}(n+1)$ est donc vraie et la propriété est héréditaire.

Conclusion La propriété étant initialisée et héréditaire, d'après le principe de récurrence, $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$.

(b) Soit $n \in \mathbb{N}$, on a, d'après la question 2.(d) :

$$u_{n+1} - u_n = f(u_n) - u_n = f(-u_n).$$

Or pour tout $n \in \mathbb{N}$, $u_n > 0$ donc $-u_n < 0$ et $f(-u_n) < 0$ d'après la question 2.(c).. Ainsi $u_{n+1} < u_n$ et la suite $(u_n)_{n \in \mathbb{N}}$ est strictement décroissante.

(c) D'après les deux questions précédentes, on sait que $(u_n)_{n\in\mathbb{N}}$ est décroissante et minorée par 0 donc d'après le théorème de convergence monotone, elle converge vers $\ell\geqslant 0$.

Raisonnons par l'absurde et supposons que $\ell \neq 0$. Comme la fonction f est continue sur \mathbb{R}_+^* , on a $\lim_{n \to +\infty} f(u_n) = \ell$.

De plus, $\lim_{n \to +\infty} u_{n+1} = \ell$. Ainsi par unicité de la limite, $f(\ell) = \ell$. On obtient donc l'équation :

$$\ln\left(\frac{\mathrm{e}^{\ell}-1}{\ell}\right) = \ell \iff \frac{\mathrm{e}^{\ell}-1}{\ell} = \mathrm{e}^{\ell} \iff \ell\mathrm{e}^{\ell}-\mathrm{e}^{\ell}+1 = 0 \iff g(\ell) = 0.$$

Absurde car $g(x) \neq 0$ pour $x \neq 0$ d'après la question 1.(b). On en déduit donc que $\ell = 0$

Problème 2 Adapté d'Ecricome 2015, voie S

1. (a) i. On calcule P(1) et on obtient P(1) = 0 ainsi 1 est une racine de P.

ii. On cherche trois réels a, b et c tels que $P(x)=(x-1)(ax^2+bx+c)$. On a :

$$(x-1)(ax^2+bx+c) = ax^3+bx^2+cx-(ax^2+bx+c) = ax^3+(b-a)x^2+(c-b)x-c$$

Identifions coefficients par coefficients avec ceux de P, on obtient :

$$a = 2$$
, $b - a = -3$, $c - b = 0$, $-c = 1$.

On obtient a=2, c=-1 et b=-1. On a alors :

$$P(x) = 2x^3 - 3x^2 + 1 = (x - 1)(2x^2 - x - 1).$$

iii. On peut factoriser le polynôme $2x^2 - x - 1$.

Les racines de $2x^2-x-1$ sont 1 et $-\frac{1}{2}$ de sorte que $2x^2-x-1=2(x-1)\left(x+\frac{1}{2}\right)$. Et donc

$$P(x) = 2(x-1)^{2} \left(x + \frac{1}{2}\right)$$

(b) La fonction \sin est dérivable $\sup \mathbb{R}$ et \tan est dérivable $\sup I$, donc f est dérivable $\sup I$ comme somme de fonctions dérivables. Puisque $x\mapsto x$ est dérivable $\sup \mathbb{R}$, la fonction u est dérivable $\sup I$ comme somme de fonctions dérivables $\sup I$. On a alors

$$\forall x \in I, \quad u'(x) = \frac{1}{3} \left(2\cos x + \frac{1}{\cos^2 x} \right) - 1 = \frac{2\cos^3 x - 3\cos^2 x + 1}{3\cos^2 x} = \frac{P(\cos x)}{3\cos^2 x}.$$

(c) Pour $x \in I$, $\cos(x) \in]0,1[$, et donc $P(\cos(x)) \geqslant 0$. Par conséquent, $u'(x) \geqslant 0$ sur I, et donc u est constant constant

(d) La fonction v est dérivable sur I comme somme et quotient de fonctions dérivables sur I, avec $\forall x \in I$, $2 + \cos(x) \neq 0$. On a alors pour tout $x \in I$,

$$v'(x) = 1 - \frac{3\cos(x)(2+\cos(x)) + 3\sin^2(x)}{(2+\cos(x))^2}$$

$$= \frac{(2+\cos(x))^2 - 6\cos(x) - 3\cos^2(x) - 3(1-\cos^2(x))}{(2+\cos(x))^2}$$

$$= \frac{1-2\cos(x) + \cos^2(x)}{(2+\cos(x))^2}.$$

Si on pose $Q(x)=x^2-2x+1\in\mathbb{R}_2[x]$, alors $\forall x\in I$, $v'(x)=\frac{Q(\cos(x))}{(2+\cos(x))^2}$.

(e) On a $Q(x) = (x-1)^2$, de sorte que $\forall x \in I$, $Q(\cos(x)) > 0$, car $\cos(x) \neq 1$ puisque $x \neq 0$ sur I. Donc v' est strictement positive sur I, et donc v est strictement croissante sur I].

(f) On a $\lim_{x\to 0} u(x) = 0$, et u est croissante strictement sur I de sorte que

$$\forall x \in I, \quad u(x) > 0 \Leftrightarrow f(x) > x.$$

De même, v est strictement croissante sur I et $\lim_{x\to 0}v(x)=0$, de sorte que

$$\forall x \in I, \quad v(x) > 0 \Leftrightarrow g(x) < x.$$

Ainsi, en associant les deux inégalités précédentes, on obtient :

$$\forall x \in I, \quad g(x) < x < f(x).$$

2. (a) On a

$$\cos\left(\frac{\pi}{12}\right) = \cos\left(\frac{\pi}{4} - \frac{\pi}{6}\right) = \cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) + \sin\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{2}}{2}\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2}\frac{1}{2} = \frac{\sqrt{2} + \sqrt{6}}{4}.$$

Ainsi
$$\left(\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}\right)$$
. De même,

$$\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{6}\right) - \cos\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{2}\sqrt{3}}{2} - \frac{\sqrt{2}}{2}\frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4}$$

Ainsi $\sqrt{\sin\left(\frac{\pi}{12}\right)} = \frac{\sqrt{6}-\sqrt{2}}{4}$. On en déduit que, en multipliant par la quantité conjuguée,

$$\tan\left(\frac{\pi}{12}\right) = \frac{\sin\left(\frac{\pi}{12}\right)}{\cos\left(\frac{\pi}{12}\right)} = \frac{\sqrt{6} - \sqrt{2}}{\sqrt{6} + \sqrt{2}} = \frac{(\sqrt{6} - \sqrt{2})(\sqrt{6} - \sqrt{2})}{(\sqrt{6} + \sqrt{2})(\sqrt{6} - \sqrt{2})} = \frac{(\sqrt{6} - \sqrt{2})^2}{\sqrt{6}^2 - \sqrt{2}^2} = \frac{8 - 4\sqrt{3}}{4} = 2 - \sqrt{3}.$$

Ainsi
$$\left(\tan\left(\frac{\pi}{12}\right) = 2 - \sqrt{3}\right)$$

(b) De la question 1.(f), on déduit que

$$g\left(\frac{\pi}{12}\right) < \frac{\pi}{12} < f\left(\frac{\pi}{12}\right)$$

soit

$$\frac{3(\sqrt{6}-\sqrt{2})}{8+\sqrt{6}+\sqrt{2}} < \frac{\pi}{12} < \frac{1}{3} \left(\frac{\sqrt{6}-\sqrt{2}}{2} + 2 - \sqrt{3} \right)$$

et donc, on obtient l'encadrement de π suivant :

$$\boxed{36\frac{\sqrt{6}-\sqrt{2}}{8+\sqrt{6}+\sqrt{2}} < \pi < 2\sqrt{6}-2\sqrt{2}+8-4\sqrt{3}}$$

3. (a) Pour tout réel θ , on a

$$\cos(2\theta) = \cos(\theta + \theta) = \cos^{2}(\theta) - \sin^{2}(\theta) = 1 - \sin^{2}(\theta) - \sin^{2}(\theta) = 1 - 2\sin^{2}(\theta).$$

On en déduit que pour tout entier naturel n,

$$b_n = \cos\left(\frac{\pi}{3 \times 2^n}\right) = \cos\left(2 \times \frac{\pi}{3 \times 2^{n+1}}\right) = 1 - 2\sin^2\left(\frac{\pi}{3 \times 2^{n+1}}\right) = 1 - 2a_{n+1}^2.$$

Soit encore $a_{n+1}^2=\frac{1-b_n}{2}$. Mais $0\leqslant \frac{\pi}{3\times 2^n}\leqslant \frac{\pi}{2}$, de sorte que $a_{n+1}=\cos\left(\frac{\pi}{3\times 2^n}\right)\geqslant 0$ et donc

$$a_{n+1} = \sqrt{\frac{1 - b_n}{2}}$$

De plus, on a $a_{n+1}^2+b_{n+1}^2=\cos^2\left(\frac{\pi}{3\times 2^n}\right)+\sin^2\left(\frac{\pi}{3\times 2^n}\right)=1$ soit

$$b_{n+1}^2 = 1 - a_{n+1}^2 = 1 - \frac{1 - b_n}{2} = \frac{1 + b_n}{2}$$

Mais $b_n = \sin\left(\frac{\pi}{3\times 2^n}\right) \geqslant 0$ car $0 \leqslant \frac{\pi}{3\times 2^n} \leqslant \pi$ et donc

$$b_{n+1} = \sqrt{\frac{1+b_n}{2}}$$

(b) En utilisant le résultat de la question 1.(f) avec $x=\frac{\pi}{3\times 2^n}\in I$ (d'après ce qu'on a dit en 3.(a)), on a, pour tout entier naturel n,

$$g\left(\frac{\pi}{3\times 2^n}\right) < \frac{\pi}{3\times 2^n} < f\left(\frac{\pi}{3\times 2^n}\right)$$

soit

$$\left(3\frac{a_n}{2+b_n} < \frac{\pi}{3 \times 2^n} < \frac{1}{3}\left(2a_n + \frac{a_n}{b_n}\right) \iff 9 \times 2^n \frac{a_n}{2+b_n} < \pi < 2^n \left(2a_n + \frac{a_n}{b_n}\right).\right)$$

(c) i. On remarque que pour $t \neq 0$,

$$\frac{\sin(t)}{t} = \frac{\sin(t) - \sin(0)}{t - 0}.$$

On reconnaît le taux d'accroissement de la fonction \sin en 0. Or la fonction \sin est dérivable sur $\mathbb R$ donc en particulier en 0 et

$$\lim_{t \to 0} \frac{\sin(t)}{t} = \sin'(0) = \cos(0) = 1.$$

Ainsi,
$$\left(\lim_{t\to 0} \frac{\sin(t)}{t} = 1\right)$$

ii. On remarque que

$$9 \times 2^{n} \times \sin\left(\frac{\pi}{3 \times 2^{n}}\right) = 3\pi \times \frac{\sin\left(\frac{\pi}{3 \times 2^{n}}\right)}{\frac{\pi}{3 \times 2^{n}}}$$

Or $\lim_{n\to +\infty} \frac{\pi}{3\times 2^n}=0$ et $\lim_{t\to 0} \frac{\sin(t)}{t}=1$ donc par composée de limites :

$$\lim_{n \to +\infty} \frac{\sin\left(\frac{\pi}{3 \times 2^n}\right)}{\frac{\pi}{3 \times 2^n}} = 1.$$

On conclut par produit de limites que $\underbrace{\lim_{n\to +\infty} 9\times 2^n\times \sin\left(\frac{\pi}{3\times 2^n}\right) = 3\pi}$

iii. D'après ce qui précède, on a que :

$$\lim_{n \to +\infty} 9 \times 2^n \times a_n = 3\pi.$$

De plus, comme $\lim_{n\to +\infty} \frac{\pi}{3\times 2^n}=0$ et $\lim_{t\to 0}\cos(t)=1$, on a par composée de limites :

$$\lim_{n \to +\infty} b_n = 1.$$

Ainsi $\lim_{n\to +\infty} 2+b_n=3$. On en déduit par produit de limites que, $\underbrace{\left(\lim_{n\to +\infty} 9\times 2^n \frac{a_n}{2+b_n}=\frac{3\pi}{3}=\pi\right)}$

iv. Calculons maintenant la limite du terme $2^n \left(2a_n + \frac{a_n}{b_n}\right)$.

Comme on sait que $\lim_{n \to +\infty} 9 \times 2^n \times a_n = 3\pi$, on en déduit que $\lim_{n \to +\infty} 2 \times 2^n a_n = \frac{2}{9} \times 3\pi = \frac{2\pi}{3}$ et que $\lim_{n \to +\infty} 2^n a_n = \frac{1}{9} \times 3\pi = \frac{\pi}{3}$. De plus, $\lim_{n \to +\infty} b_n = 1$ donc par opérations sur les limites, on a :

$$\lim_{n\to +\infty} 2^n \left(2a_n + \frac{a_n}{b_n}\right) = \lim_{n\to +\infty} 2\times 2^n \times a_n + \frac{2^n\times a_n}{b_n} = \frac{2\pi}{3} + \frac{\pi}{3} = \pi.$$

On obtient bien donc que $\left(\lim_{n \to +\infty} \left(2a_n + \frac{a_n}{b_n}\right) = \pi\right)$