Corrigé du DM nº 2

Exercice 1

1. Domaine de définition

La fonction $x\mapsto x^2-3x-4$ est définie sur \mathbb{R} . La fonction $x\mapsto \ln(x)$ est définie sur \mathbb{R}_+^* . On commence donc par chercher les $x \in \mathbb{R}$ tels que $x^2 - 3x - 4 > 0$.

On calcule le discriminant $\Delta=25$ et les racines $x_1=4$ et $x_2=-1$. On a alors :

$$x^2 - 3x - 4 > 0 \iff x \in]-\infty, -1[\cup]4, +\infty[.$$

La fonction $x\mapsto \ln(x^2-3x-4)$ est donc définie sur $]-\infty,-1[\cup]4,+\infty[$. La fonction $x\mapsto \mathrm{e}^x-3$ est définie sur \mathbb{R} . La fonction $x\mapsto \sqrt{x}$ est définie sur \mathbb{R}_+ . On chercher donc les réels x tels que $e^x - 3 \geqslant 0$. On a alors :

$$e^x - 3 \ge 0 \iff e^x \ge 3 \iff x \ge \ln(3)$$
.

Ainsi $x \mapsto \sqrt{e^x - 3}$ est définie pour $x \in [\ln(3), +\infty[$ et s'annule pour $x = \ln(3)$.

On en déduit que $x\mapsto \frac{1}{\sqrt{\mathrm{e}^x-3}}$ est définie sur $]\ln(3),+\infty[.$

Il reste à comparer $\ln(3)$ et 4 pour finaliser notre étude. On sait que $\ln(e)=1$ et que $e\simeq 2,7$. Comme la fonction \ln est strictement croissante, on en déduit que $\ln(3)>1$. De plus, $3< e^2$ et $\ln(e^2)=2\ln(e)=2$ donc $1<\ln(3)<2$. Ainsi ln(3) < 4.

En conclusion, la fonction f est définie sur $\lceil |4, +\infty \rceil$

2. Logarithme et exponentielle

(a)

$$\begin{split} A &= 5 \ln \left(\frac{3^2}{3 \times 5}\right) - 4 \ln \left(\frac{3}{5^2}\right) + 8 \ln \left(\frac{5}{3^2}\right) \\ &= 5 (\ln(3) - \ln(5)) - 4 (\ln(3) - 2 \ln(5)) + 8 (\ln(5) - 2 \ln(3)) \\ &= 5 \ln(3) - 5 \ln(5) - 4 \ln(3) + 8 \ln(5) + 8 \ln(5) - 16 \ln(3) \\ &= -15 \ln(3) + 11 \ln(5). \end{split}$$

On a donc $A = -15 \ln(3) + 11 \ln(5)$

(b)

$$B = \ln\left(\frac{(\sqrt{7}+2)(\sqrt{7}-2)}{4}\right)$$
$$= \ln\left(\frac{7-4}{4}\right)$$
$$= \ln(3) - 2\ln(2).$$

On a donc $B = \ln(3) - 2\ln(2)$

(c)

$$C = \left(e^{\ln(2)}\right)^3 = 2^3 = 8.$$

On a donc C=8

(d)

$$D = x^{3} + 2x - \left(e^{\ln(x)}\right)^{3} + 0$$
$$= x^{3} + 2x - x^{3}$$
$$= 2x.$$

On a donc D = 2x

(e) L'équation est définie sur $]3, +\infty[$. On la résout donc sur ce domaine. Soit $x \in]3, +\infty[$.

$$\ln(x-3) + \ln(x+1) = 3\ln 2 \iff \ln((x-3)(x+1)) = \ln(8)$$

$$\iff (x-3)(x+1) = 8$$

$$\iff x^2 - 3x + x - 3 = 8$$

$$\iff x^2 - 2x - 11 = 0$$

On calcule le discriminant $\Delta = (-2)^2 - 4 \times (-11) = 48$. Les solutions de l'équation sont donc

$$x_1 = 1 - 2\sqrt{3}$$
 et $x_2 = 1 + 2\sqrt{3}$

Or, on a $1-2\sqrt{3}<3$ et $1+2\sqrt{3}>3$ donc

Problème 1

1. Calculons ch(0) et sh(0) :

$$ch(0) = \frac{e^0 + e^{-0}}{2} = \frac{1+1}{2} = 1 \text{ et } sh(0) = \frac{e^0 - e^{-0}}{2} = \frac{1-1}{2} = 0$$

- 2. Étudions la parité des fonctions ch et sh :
 - $\mathscr{D}_{\mathrm{ch}}=\mathbb{R}$ qui est bien symétrique par rapport à zéro. Soit x dans \mathbb{R} . Alors :

$$ch(-x) = \frac{e^{-x} + e^x}{2} = \frac{e^x + e^{-x}}{2} = ch(x)$$

donc la fonction ch est paire

ullet $\mathscr{D}_{\operatorname{sh}}=\mathbb{R}$ qui est bien symétrique par rapport à zéro. Soit x dans \mathbb{R} . Alors :

$$\operatorname{sh}(-x) = \frac{e^{-x} - e^x}{2} = \frac{-(e^x - e^x)}{2} = -\frac{e^x - e^{-x}}{2} = -\operatorname{sh}(x)$$

donc la fonction sh est impaire

3. Résolvons dans \mathbb{R} l'équation $\operatorname{sh}(x) = 0$:

Soit x dans \mathbb{R} . Alors :

$$sh(x) = 0 \iff \frac{e^x - e^{-x}}{2} = 0$$

$$\iff e^x - e^{-x} = 0$$

$$\iff e^x = e^{-x}$$

$$\iff x = -x$$

$$\iff x = 0$$

Ainsi, l'ensemble des solutions est : $\mathcal{S} = \{0\}$.

4. (a) Montrons l'équivalence de l'énoncé :

Soit x dans \mathbb{R} . Alors :

$$\operatorname{ch}(x) = 2 \iff \frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2} = 2$$

$$\iff \mathrm{e}^x + \mathrm{e}^{-x} = 4$$

$$\iff \mathrm{e}^x(\mathrm{e}^x + \mathrm{e}^{-x}) = 4\mathrm{e}^x \qquad \operatorname{car} \quad e^x \neq 0$$

$$\iff \mathrm{e}^{2x} + 1 = 4\mathrm{e}^x$$

$$\iff \mathrm{e}^{2x} - 4\mathrm{e}^x + 1 = 0$$

(b) Résolvons dans \mathbb{R} l'équation $\operatorname{ch}(x)=2$. L'astuce va être d'utiliser l'équivalence précédente et d'effectuer le changement de variable $X=\operatorname{e}^x$. Soit x dans \mathbb{R} . Alors :

$$ch(x) = 2 \iff e^{2x} - 4e^x + 1 = 0$$
$$\iff (X = e^x \text{ et } X^2 - 4X + 1 = 0)$$

Résolvons l'équation $X^2-4X+1=0$: $\Delta=(-4)^2-4\times 1\times 1=12>0$ donc l'équation $X^2-4X+1=0$ admet deux solutions réelles distinctes $X_1=\frac{4-\sqrt{12}}{2}=\frac{4-2\sqrt{3}}{2}=2-\sqrt{3}$ et $X_2=\frac{4+\sqrt{12}}{2}=\frac{4+2\sqrt{3}}{2}=2+\sqrt{3}$. Par suite, on a les équivalences suivantes (on remarque que $2-\sqrt{3}>0$)

$$\operatorname{ch}(x) = 2 \iff \operatorname{e}^x = 2 - \sqrt{3} \text{ ou } \operatorname{e}^x = 2 + \sqrt{3}$$

$$\iff x = \ln(2 - \sqrt{3}) \text{ ou } x = \ln(2 + \sqrt{3})$$

Bilan : L'ensemble des solutions est : $\mathscr{G} = \{\ln(2-\sqrt{3}), \ln(2+\sqrt{3})\}.$

5. (a) Montrons que : $\forall x \in \mathbb{R} \quad \operatorname{ch}(x) > 0$:

Soit x dans \mathbb{R} . On sait que $e^x > 0$ et que $e^{-x} > 0$ donc $e^x + e^{-x} > 0$ donc $\frac{e^x + e^{-x}}{2} > 0$ et donc $\underbrace{\cosh(x) > 0}$.

(b) Calculons $\operatorname{sh}'(x)$ pour x dans $\mathbb R$:

Soit x dans \mathbb{R} . Alors $\mathrm{sh}'(x) = \frac{\mathrm{e}^x + \mathrm{e}^{-x}}{2} = \mathrm{ch}(x) > 0$ d'après la question 6.(a).

Par suite, la fonction sh est strictement croissante sur \mathbb{R} .

6. (a) Montrons l'équivalence : $\forall x \in \mathbb{R} \quad \operatorname{sh}(x) > 0 \iff x > 0$:

D'après ce qui précède, la fonction sh est strictement croissante sur \mathbb{R} et sh(0)=0 donc le tableau de signes de la fonction sh est :

x	$-\infty$		0		$+\infty$
sh(x)		_	0	+	

Donc on a bien l'équivalence : $\forall x \in \mathbb{R} \quad \operatorname{sh}(x) > 0 \iff x > 0$.

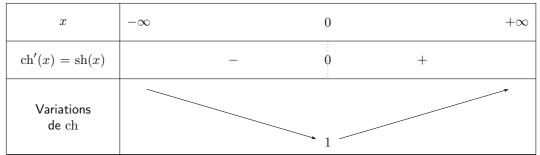
(b) Étudions les variations de la fonction ch :

Soit
$$x$$
 dans \mathbb{R} . Alors $\mathrm{ch}'(x) = \frac{\mathrm{e}^x - \mathrm{e}^{-x}}{2} = \mathrm{sh}(x)$.

Or, d'après la question 6.(a), on sait que $\forall x \in \mathbb{R}$ $\operatorname{sh}(x) > 0 \iff x > 0$.

Donc la fonction ch est strictement décroissante sur \mathbb{R}_{-} puis strictement croissante sur \mathbb{R}_{+}

7. Dressons le tableau de variations de la fonction ch :



Dressons le tableau de variations de la fonction ${\rm sh}$:

ons de la fonction sir .				
x	$-\infty$	$+\infty$		
$\operatorname{sh}'(x) = \operatorname{ch}(x)$	+			
Variations de sh				

8. Soit $x \in \mathbb{R}$,

$$(\operatorname{ch}(x))^{2} - (\operatorname{sh}(x))^{2} = \left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - \left(\frac{e^{x} - e^{-x}}{2}\right)^{2}$$
$$= \left(\frac{e^{x} + e^{-x} + e^{x} - e^{-x}}{2}\right) \left(\frac{e^{x} + e^{-x} - (e^{x} - e^{-x})}{2}\right)$$
$$= e^{x} \times e^{-x} = 1.$$

Ainsi, $\forall x \in \mathbb{R}$, $(\cosh(x))^2 - (\sinh(x))^2 = 1$. 9. Montrons que : $\forall x \in \mathbb{R}$ $\cosh(x) > \sinh(x)$:

Soit
$$x$$
 dans \mathbb{R} . Alors $\operatorname{ch}(x) - \operatorname{sh}(x) = \frac{\operatorname{e}^x + \operatorname{e}^{-x}}{2} - \frac{\operatorname{e}^x - \operatorname{e}^{-x}}{2} = \frac{\operatorname{e}^x + \operatorname{e}^{-x} - \operatorname{e}^x + \operatorname{e}^{-x}}{2} = \operatorname{e}^{-x} > 0$.

Ainsi, $\forall x \in \mathbb{R} \quad \operatorname{ch}(x) > \operatorname{sh}(x)$

10. Résolvons dans \mathbb{R} l'inéquation : $ch(x) - sh(x) \leq 0,01$:

Soit x dans \mathbb{R} . On vient de montrer que $\mathrm{ch}(x) - \mathrm{sh}(x) = \mathrm{e}^{-x}$. Par suite :

$$\operatorname{ch}(x) - \operatorname{sh}(x) \leqslant 0,01 \iff e^{-x} \leqslant 0,01$$
$$\iff -x \leqslant \ln(0,01)$$
$$\iff x \geqslant -\ln(0,01)$$

Or, $-\ln(0,01) = -\ln\left(\frac{1}{100}\right) = \ln(100)$ donc l'ensemble des solutions est $\mathscr{G} = [\ln(100); +\infty[$.

11. Soit f la fonction définie par :

$$f(x) = \frac{x}{\sinh(x)}$$

(a) Déterminons l'ensemble de définition \mathcal{D}_f de la fonction f:

$$x \notin \mathcal{D}_f \iff \operatorname{sh}(x) = 0$$
 $\iff x = 0$ d'après la question 3.

 $\mathsf{donc}\left(\overline{\mathcal{D}_f = \mathbb{R}^*}\right)$

(b) Étudions la parité de la fonction f:

 $\mathcal{D}_f = \mathbb{R}^*$ qui est bien symétrique par rapport à zéro. Soit x dans \mathbb{R}_* . Alors :

$$f(-x) = \frac{-x}{\operatorname{sh}(-x)} = \frac{-x}{-\operatorname{sh}(x)} = \frac{x}{\operatorname{sh}(x)} = f(x)$$

donc la fonction f est (paire)

(c) Calculons f'(x):

Soit x dans \mathbb{R}_* . Nous avons vu précédemment que $\operatorname{sh}'(x) = \operatorname{ch}(x)$. Posons u(x) = x et $v(x) = \operatorname{sh}(x)$. Alors u'(x) = 1et $v'(x)=\operatorname{ch}(x)$. Par suite, $f(x)=\frac{u'(x)v(x)-u(x)v'(x)}{(v(x))^2}=\frac{1\times\operatorname{sh}(x)-x\operatorname{ch}(x)}{(\operatorname{sh}(x))^2}.$ Ainsi, $\boxed{\forall x\in\mathbb{R}^*\quad f'(x)=\frac{\operatorname{sh}(x)-x\operatorname{ch}(x)}{(\operatorname{sh}(x))^2}.}$

Ainsi,
$$\forall x \in \mathbb{R}^*$$
 $f'(x) = \frac{\sinh(x) - x \cosh(x)}{(\sinh(x))^2}$.

(d) Étudions les variations de la fonction g:

La fonction g est définie et dérivable sur \mathbb{R} et pour tout x dans \mathbb{R} :

$$g'(x) = \operatorname{ch}(x) - (\operatorname{ch}(x) + x\operatorname{sh}(x)) = -x\operatorname{sh}(x)$$

Or, d'après la question 7.(a), nous savons que sh(x) est du signe de x, d'où le tableau de signes :

x	$-\infty$		0		$+\infty$
-x		+	0	_	
sh(x)		_	0	+	
g'(x)		_	0	_	

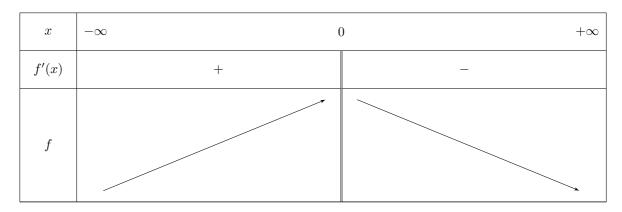
Ainsi, la fonction g est [strictement décroissante sur $\mathbb{R} [$

(e) Dressons le tableau de variations de la fonction f:

D'après la question 11.(c) : $\forall x \in \mathbb{R}^*$ $f'(x) = \frac{g(x)}{(\operatorname{sh}(x))^2}$ donc f'(x) est du signe de g(x). Or, d'après la question précédente, g est strictement décroissante sur \mathbb{R} avec g(0) = 0 donc le tableau de signes de la fonction g est donné par :

x	$-\infty$		0		$+\infty$
g(x)		+	0	_	

On en déduit le tableau de variations de la fonction f:



Exercice 2

- 1. Soit $c \in \mathbb{R}$. On considère la fonction constante f égale à c. La fonction f est définie sur \mathbb{R} et à valeurs dans \mathbb{R} . Elle est continue en 0 et en 1 . Soit $x \in \mathbb{R}$, $f(x^2) = c = f(x)$. Ainsi, les fonctions constantes sont solutions du problème posé).
- 2. Soit $f \in E$.
 - (a) La fonction f est définie sur $\mathbb R$ qui est bien un domaine symétrique par rapport à 0. Soit $x \in \mathbb R$, $f(-x) = f\left((-x)^2\right) = f\left(x^2\right) = f(x)$ puisque f vérifie (\star) . Ainsi, la fonction f est paire.
 - (b) Soit $x \in [0, 1[$
 - i. Pour tout $n \in \mathbb{N}$, on pose $\mathcal{P}(n)$: « $f\left(x^{2^n}\right) = f(x)$ ».

Initialisation Pour n=0, on a $f\left(x^{2^0}\right)=f\left(x^1\right)=f(x)$ donc $\mathcal{P}(0)$ est vraie.

Hérédité Soit $n \in \mathbb{N}$. Supposons $\mathcal{P}(n)$ vraie et montrons que $\mathcal{P}(n+1)$ est vraie. On a alors

$$\begin{split} f\left(x^{2^{n+1}}\right) &= f\left(\left(x^{2^n}\right)^2\right) \\ &= f\left(x^{2^n}\right) \quad \text{d'après la relation } (\star) \\ &= f(x) \quad \text{par hypothèse de récurrence} \end{split}$$

Donc P(n+1) est vraie et la propriété est héréditaire.

Conclusion D'après le principe de récurrence, pour tout $n \in \mathbb{N}$, on a $f\left(x^{2^n}\right) = f(x)$.

ii. On a $x^{2^n}=\exp{(2^n\ln(x))}$. Comme $x\in[0,1[$, on a $\ln(x)<0$ et comme $\lim_{n\to+\infty}2^n+\infty$ (car 2>1), on a par produit de limites $\lim_{n\to+\infty}2^n\ln(x)=-\infty$. De plus, $\lim_{x\to-\infty}{\rm e}^x=0$ donc par composée de limites : $\lim_{n\to+\infty}x^{2^n}=0$. Ainsi, d'après la caractérisation séquentielle de la limite et puisque f est continue en 0 , on obtient :

$$\lim_{n \to +\infty} f\left(x^{2^n}\right) = f(0).$$

Or, d'après la question précédente, $f\left(x^{2^n}\right)=f(x)$ pour tout $n\in\mathbb{N}$. Comme $\lim_{n\to+\infty}f(x)=f(x)$, d'après l'unicité de la limite, on a f(x)=f(0).

(c) Soit $x \in [1, +\infty[$.

i. On a
$$f(\sqrt{x}) = f\left((\sqrt{x})^2\right) = f(x)$$
 d'après (\star) . Donc $f(\sqrt{x}) = f(x)$

ii. Pour tout $n \in \mathbb{N}$, on pose $\mathcal{P}(n)$: « $f\left(x^{\frac{1}{2^n}}\right) = f(x)$ ».

Initialisation Pour n=0, on a $f\left(x^{\frac{1}{2^0}}\right)=f\left(x^1\right)=f(x)$ donc $\mathcal{P}(0)$ est vraie.

Hérédité Soit $n \in \mathbb{N}$ fixé. Supposons $\mathcal{P}(n)$ vraie et montrons que $\mathcal{P}(n+1)$ est vraie. On a alors

$$f\left(x^{\frac{1}{2^{n+1}}}\right) = f\left(\sqrt{x^{\frac{1}{2^n}}}\right) = f\left(x^{\frac{1}{2^n}}\right) = f(x)$$

en utilisant la question précédente puis l'hypothèse de récurrence. Donc $\mathcal{P}(n+1)$ est vraie et la propriété est héréditaire.

Conclusion D'après le principe de récurrence, pour tout $n \in \mathbb{N}, f\left(x^{\frac{1}{2^{n}}}\right) = f(x)$.

iii. On a $x^{\frac{1}{2^n}}=\exp\left(\frac{1}{2^n}\ln(x)\right)$. Comme 2>1, on a $\lim_{n\to+\infty}2^n=+\infty$. Comme $x\geqslant 1, \ln(x)\geqslant 0$ et donc par quotient $\lim_{n\to+\infty}\frac{1}{2^n}\ln(x)=0$. De plus, $\lim_{x\to 0}\mathrm{e}^x=1$ donc par composition de limites, $\lim_{n\to+\infty}x^{\frac{1}{2^n}}=1$. Ainsi, d'après la caractérisation séquentielle de la limite, et puisque f est continue en 1, on a :

$$\lim_{n \to +\infty} f\left(x^{\frac{1}{2n}}\right) = f(1).$$

Or, d'après la question précédente, pour tout $n \in \mathbb{N}$, $f\left(x^{\frac{1}{2^n}}\right) = f(x)$, de plus $\lim_{n \to +\infty} f(x) = f(x)$. Par unicité de la limite, f(x) = f(x).

(d) On a démontré en question 2.(b) que : $\forall x \in [0,1[$, f(x)=f(0) et en question 2.(c) que : $\forall x \in [1,+\infty]$, f(x)=f(1). Ainsi,

$$\lim_{x \to 1^{-}} f(x) = f(0) \quad \text{ et } \quad \lim_{x \to 1^{+}} f(x) = f(1).$$

Mais, la fonction f est continue en 1 par hypothèse donc nécessairement f(0)=f(1). En conclusion, pour tout $x\in\mathbb{R}_+$, f(x)=f(1) donc la fonction f est constante sur \mathbb{R}_+ .

- (e) La fonction f est paire d'après la question f est paire d'après la question f est paire d'après la question f est constante sur f constante s
- 3. Dans cet exercice nous avons raisonné par analyse-synthèse.

Dans la question 2, nous avons démontré que les seules fonction pouvant être solutions du problème étaient les fonctions constantes (analyse).

Dans la question 1 , nous avons montré que les fonctions constantes étaient bien solutions du problème (synthèse).

Conclusion : Les seules solutions du problèmes sont les fonctions constantes.