Corrigé DM nº 1

Exercice 1

Soit $(u_n)_n$ la suite définie par :

$$\forall n \in \mathbb{N}, \quad u_n = \sum_{k=0}^n \frac{1}{(k+1)(k+2)}.$$

1. (a)
$$u_0 = \sum_{k=0}^{0} \frac{1}{(k+1)(k+2)} = \frac{1}{1 \times 2} = \boxed{\frac{1}{2}}$$

$$u_1 = \sum_{k=0}^{1} \frac{1}{(k+1)(k+2)} = \frac{1}{2} + \frac{1}{2 \times 3} = \frac{1}{2} + \frac{1}{6} = \frac{4}{6} = \boxed{\frac{2}{3}}$$

$$u_2 = \sum_{k=0}^{2} \frac{1}{(k+1)(k+2)} = \frac{2}{3} + \frac{1}{3 \times 4} = \frac{2}{3} + \frac{1}{12} = \frac{9}{12} = \boxed{\frac{3}{4}}$$

$$u_3 = \sum_{k=0}^{3} \frac{1}{(k+1)(k+2)} = \frac{3}{4} + \frac{1}{4 \times 5} = \frac{3}{4} + \frac{1}{20} = \frac{16}{20} = \boxed{\frac{4}{5}}$$

- (b) D'après les premiers termes, on conjecture que $u_n = \frac{n+1}{n+2}$ pour $n \in \mathbb{N}$.
- (c) Notons $\mathcal{P}(n)$ la proposition : « $u_n = \frac{n+1}{n+2}$ ».

Initialisation (n=0):

$$u_0 = \frac{1}{2}$$
 et $\frac{0+1}{0+2} = \frac{1}{2}$ donc $u_0 = \frac{0+1}{0+2}$ donc $\mathcal{P}(0)$ est vraie.

Hérédité : Soit n un entier quelconque dans \mathbb{N} . Supposons $\mathcal{P}(n)$ vraie et montrons que $\mathcal{P}(n+1)$ est vraie. D'après la relation de Chasles :

$$u_{n+1} = \sum_{k=0}^{n+1} \frac{1}{(k+1)(k+2)} = \sum_{k=0}^{n} \frac{1}{(k+1)(k+2)} + \frac{1}{(n+2)(n+3)} = u_n + \frac{1}{(n+2)(n+3)}$$

Or, par hypothèse de récurrence, on sait que $u_n = \frac{n+1}{n+2}$ donc :

$$u_{n+1} = \frac{(n+1)(n+3)}{(n+2)(n+3)} + \frac{1}{(n+2)(n+3)} = \frac{n^2 + 4n + 4}{(n+2)(n+3)} = \frac{(n+2)^2}{(n+2)(n+3)} = \frac{n+2}{n+3}$$

donc $\mathcal{P}(n+1)$ est vraie et ainsi, la proposition est héréditaire.

Conclusion : D'après le principe de récurrence, la proposition $\mathcal{P}(n)$ est vraie pour tout n dans \mathbb{N} , à savoir :

$$\forall n \in \mathbb{N}$$
 $u_n = \frac{n+1}{n+2}$

2. (a) Soit $k \in \mathbb{N}$:

$$\frac{1}{k+1} - \frac{1}{k+2} = \frac{k+2}{(k+1)(k+2)} - \frac{k+1}{(k+1)(k+2)} = \frac{1}{(k+1)(k+2)}$$

(b) Exprimons u_n en fonction de n. On reconnaît une somme télescopique :

$$u_n = \sum_{k=0}^n \frac{1}{(k+1)(k+2)} = \sum_{k=0}^n \left(\frac{1}{k+1} - \frac{1}{k+2}\right) = \sum_{k=0}^n \frac{1}{k+1} - \sum_{k=0}^n \frac{1}{k+2}.$$

On effectue un changement d'indice dans la deuxième somme. On pose i=k+1. On a alors :

$$u_n = \sum_{k=0}^n \frac{1}{k+1} - \sum_{i=1}^{n+1} \frac{1}{i+1}$$

$$= \frac{1}{0+1} + \sum_{k=1}^n \frac{1}{k+1} - \sum_{i=1}^n \frac{1}{i+1} - \frac{1}{n+1+1}$$

$$= 1 - \frac{1}{n+2}$$

Exercice 2

1. (a) En mettant au même dénominateur et en reconnaissant une identité remarquable, on a :

$$1 - \frac{1}{k^2} = \frac{k^2 - 1}{k^2} = \frac{(k-1)(k+1)}{k \times k} = \frac{k-1}{k} \times \frac{k+1}{k}.$$

(b) Grâce à l'expression précédente, on reconnaît deux produits télescopiques, il vient :

$$P_{n} = \prod_{k=2}^{n} \left(1 - \frac{1}{k^{2}}\right) = \left(\prod_{k=2}^{n} \frac{k-1}{k}\right) \times \left(\prod_{k=2}^{n} \frac{k+1}{k}\right)$$
$$= \frac{\prod_{k=2}^{n} (k-1)}{\prod_{k=2}^{n} k} \times \frac{\prod_{k=2}^{n} (k+1)}{\prod_{k=2}^{n} k}$$

On effectue un changement d'indice dans chaque produit au numérateur. Dans le premier, on pose i=k-1 et dans le deuxième, on pose j=k+1. On obtient :

$$P_n = \frac{\prod_{i=1}^{n-1} i}{\prod_{k=2}^{n} k} \times \frac{\prod_{j=3}^{n+1} j}{\prod_{k=2}^{n} k}$$

$$= \frac{\prod_{i=2}^{n-1} i}{\left(\prod_{k=2}^{n-1} k\right) \times n} \times \frac{\left(\prod_{j=3}^{n} j\right) \times (n+1)}{2 \times \prod_{k=3}^{n} k}$$

$$= \frac{1}{n} \times \frac{n+1}{2} = \frac{n+1}{2n}$$

2. Montrons que:

$$\forall n \in \mathbb{N} \quad (n \geqslant 2), \quad \prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) = \frac{n+1}{2n}$$

Notons $\mathcal{P}(n)$ la proposition : « $\prod_{k=2}^n \left(1 - \frac{1}{k^2}\right) = \frac{n+1}{2n}$ ».

Initialisation (n=2):

$$\prod_{k=2}^2 \left(1 - \frac{1}{k^2}\right) = 1 - \frac{1}{2^2} = 1 - \frac{1}{4} = \frac{3}{4} \text{ et } \frac{2+1}{2 \times 2} = \frac{3}{4} \text{ donc } \prod_{k=2}^2 \left(1 - \frac{1}{k^2}\right) = \frac{2+1}{2 \times 2} \text{ donc } \mathcal{P}(2) \text{ est vraie.}$$

Hérédité : Soit n un entier quelconque dans $\mathbb N$ tel que $n\geqslant 2$. Supposons $\mathcal P(n)$ vraie et montrons que $\mathcal P(n+1)$ est vraie. On écrit :

$$\prod_{k=2}^{n+1} \left(1 - \frac{1}{k^2}\right) = \prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) \times \left(1 - \frac{1}{(n+1)^2}\right)$$

Or, par hypothèse de récurrence, on sait que $\prod_{k=2}^n \left(1-\frac{1}{k^2}\right) = \frac{n+1}{2n}$ et par conséquent :

$$\prod_{k=2}^{n+1} \left(1 - \frac{1}{k^2}\right) = \frac{n+1}{2n} \times \frac{(n+1)^2 - 1}{(n+1)^2} = \frac{n+1}{2n} \times \frac{(n+1-1)(n+1+1)}{(n+1)(n+1)} = \frac{n+2}{2(n+1)}$$

donc $\mathcal{P}(n+1)$ est vraie et ainsi, la proposition est héréditaire.

Conclusion : D'après le principe de récurrence, la proposition $\mathcal{P}(n)$ est vraie pour tout n dans \mathbb{N} tel que $n \ge 2$, à savoir :

$$\forall n \in \mathbb{N} \quad (n \geqslant 2), \quad \prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) = \frac{n+1}{2n}.$$

3. Pour n=1, le produit vide vaut 1, et $\frac{n+1}{2n}=\frac{2}{2}=1$ donc la formule reste vraie.

Pour n=0, l'expression $\frac{n+1}{2n}$ n'est même pas définie, donc la formule n'est pas valide.

Exercice 3

Analyse:

1. Pour montrer que la suite est bien définie, on va montrer par récurrence que pour tout entier n, u_n existe et $u_n > 0$. On pose $\mathcal{P}(n)$: « u_n existe et $u_n > 0$ ».

Initialisation (n = 0) $u_0 = x$ existe et x > 0 d'après l'énoncé. Ainsi $\mathcal{P}(0)$ est vraie.

Hérédité Soit $n \in \mathbb{N}$. On suppose $\mathcal{P}(n)$ vraie et montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, u_n existe et $u_n > 0$. On peut donc appliquer f (qui est définie sur \mathbb{R}_+^*) et donc $u_{n+1}=f(u_n)$ existe. De plus, f est à valeurs dans \mathbb{R}_+^* donc $u_{n+1}>0$. Ainsi $\mathcal{P}(n+1)$ est vraie et la propriété est héréditaire.

Conclusion La propriété étant initialisée et héréditaire, d'après le principe de récurrence, $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$, à savoir pour tout $n \in \mathbb{N}$, u_n existe, $u_n > 0$ et donc la suite $(u_n)_{n \in \mathbb{N}}$ est bien définie

- 2. Soit $n \in \mathbb{N}$, on a $u_{n+2} = f(u_{n+1}) = f(f(u_n)) = 6u_n f(u_n) = 6u_n u_{n+1}$. Ainsi la suite $(u_n)_{n\in\mathbb{N}}$ est bien une suite récurrente linéaire d'ordre 2
- 3. L'équation caractéristique associée est $r^2=-r+6$. Le calcul de son discriminant $\Delta=25$ permet d'affirmer que l'équation a deux racines réelles qui sont $r_1=-3$ et $r_2=2$. D'après le cours, on sait qu'il existe deux réels λ et μ tels que $\forall n \in \mathbb{N}, u_n = \lambda 2^n + \mu(-3)^n$
- 4. (a) On a montré à la question 1. que $\forall n \in \mathbb{N}$, $u_n > 0$. Ainsi, la relation obtenue à la question 3. donne $(\forall n \geqslant 0, \lambda 2^n + \mu(-3)^n > 0)$
 - (b) Divisons la relation précédente par $2^n>0$. On obtient $\left(\forall n\in\mathbb{N}, \lambda+\mu\left(-\frac{3}{2}\right)^n>0\right)$
 - (c) La relation précédente étant valable pour tout $n \in \mathbb{N}$, on peut l'appliquer pour n = 2k+1 avec $k \in \mathbb{N}$. On obtient :

$$\lambda + \mu \left(-\frac{3}{2}\right)^{2k+1} > 0$$

$$\operatorname{Or}\left(-\frac{3}{2}\right)^{2k+1} = (-1)^{2k+1} \left(\frac{3}{2}\right)^{2k+1} = -\left(\frac{3}{2}\right)^{2k+1} . \operatorname{Ainsi}\left(\forall k \in \mathbb{N}, \lambda - \mu \left(\frac{3}{2}\right)^{2k+1} > 0\right).$$

(d) On suppose que
$$\mu>0$$
. Passons à la limite quand k tend vers $+\infty$ dans l'inégalité de la question 4.(c). Comme $\frac{3}{2}>1$, $\lim_{k\to+\infty}\left(\frac{3}{2}\right)^{2k+1}=+\infty$. Ainsi $\lim_{k\to+\infty}\left(\lambda-\mu\left(\frac{3}{2}\right)^{2k+1}\right)=-\infty$.

On obtient donc $-\infty > 0$. Absurde donc $\mu \leq 0$

(e) La relation de la question 4.(b) étant valable pour tout $n \in \mathbb{N}$, on peut l'appliquer pour n = 2k avec $k \in \mathbb{N}$. On obtient :

$$\lambda + \mu \left(-\frac{3}{2}\right)^{2k} > 0$$

$$\operatorname{Or}\left(-\frac{3}{2}\right)^{2k} = (-1)^{2k} \left(\frac{3}{2}\right)^{2k} = \left(\frac{3}{2}\right)^{2k}. \ \operatorname{Ainsi}\left(\forall k \in \mathbb{N}, \lambda + \mu \left(\frac{3}{2}\right)^{2k} > 0\right).$$

On suppose que $\mu < 0$. Passons à la limite quand k tend vers $+\infty$ dans l'inégalité de la question 4.(c).

Comme
$$\frac{3}{2} > 1$$
, $\lim_{k \to +\infty} \left(\frac{3}{2}\right)^{2k} = +\infty$. Ainsi $\lim_{k \to +\infty} \left(\lambda + \mu \left(\frac{3}{2}\right)^{2k+1}\right) = -\infty$ (car $\mu < 0$).

On obtient donc $-\infty > 0$. Absurde donc $\sqrt{\mu = 0}$

- (f) Puisque les hypothèse $\mu > 0$ et $\mu < 0$ conduisent à des absurdités, c'est que $(\mu = 0)$
- 5. On a $\forall n \in \mathbb{N}$, $u_n = \lambda 2^n$. Donc $u_0 = \lambda$, or $u_0 = x$. Ainsi $\lambda = x$
- 6. On en déduit donc que pour tout $n \in \mathbb{N}$, $(u_n = 2^n x)$ Par définition, $u_{n+1} = f(u_n)$ donc $u_1 = \widetilde{f(u_0)} = f(x)$. Ainsi $f(x) = u_1 = 2x$.

On a donc montré que si f est solution de ce problème, alors pour tout x>0, on a f(x)=2x

Synthèse: Il faut maintenant vérifier que la fonction $f: x \mapsto 2x$ est solution du problème. Cette fonction, si on la définit sur \mathbb{R}_+^* est bien à valeurs dans \mathbb{R}_+^* . Par ailleurs, pour x>0, on a :

$$f(f(x)) = f(2x) = 4x = 6x - 2x = 6x - f(x).$$

Le problème considéré a une unique solution : \int la fonction $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}_+^*, x \mapsto 2x$