Devoir maison nº 1

Exercice 1 Etude d'une suite définie par une somme

Soit $(u_n)_n$ la suite définie par :

$$\forall n \in \mathbb{N}, \quad u_n = \sum_{k=0}^n \frac{1}{(k+1)(k+2)}.$$

On se propose d'exprimer u_n en fonction de n, par deux méthodes différentes :

- 1. Première méthode : conjecture et récurrence
 - (a) Calculer u_0 , u_1 , u_2 et u_3 .
 - (b) Conjecturer l'expression de u_n en fonction de n.
 - (c) Démontrer ce résultat par récurrence.
- 2. Deuxième méthode : par un calcul direct
 - (a) Démontrer que pour tout $k \in \mathbb{N}$:

$$\frac{1}{(k+1)(k+2)} = \frac{1}{k+1} - \frac{1}{k+2}.$$

(b) En déduire l'expression de u_n en fonction de n.

Remarque : On n'oubliera pas de vérifier que les expressions obtenues par la méthode 1 et par la méthode 2 sont égales.

Exercice 2 Etude d'un produit

Dans cet exercice, on souhaite calculer, pour $n\geqslant 2$, la valeur du produit $P_n=\prod_{k=2}^n\left(1-\frac{1}{k^2}\right)$ de deux manières différentes.

- 1. Première méthode
 - (a) Montrer que pour tout $k \in \mathbb{N}^*$, on a :

$$1 - \frac{1}{k^2} = \frac{k-1}{k} \times \frac{k+1}{k}.$$

- (b) Calculer alors P_n pour $n \geqslant 2$.
- 2. Deuxième méthode

Montrer par récurrence que pour $n \geqslant 2$,

$$\prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right) = \frac{n+1}{2n}.$$

3. La formule reste-elle vraie pour n = 1? pour n = 0?

Exercice 3

On souhaite déterminer les fonctions $f:\mathbb{R}_+^*\longrightarrow\mathbb{R}_+^*$ vérifiant :

$$\forall x > 0, \quad f(f(x)) = 6x - f(x).$$

On se propose pour cela de raisonner par analyse-synthèse.

Analyse: Soit x > 0. On considère la suite $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = x$ et pour tout $n \geqslant 0$, $u_{n+1} = f(u_n)$.

- 1. On commence par montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est bien définie. Pour cela, démontrer par récurrence que pour tout $n\in\mathbb{N}$, u_n existe et $u_n>0$.
- 2. Montrer que $(u_n)_{n\in\mathbb{N}}$ est une suite récurrente linéaire d'ordre 2.
- 3. En déduire qu'il existe λ , $\mu \in \mathbb{R}$ tels que pour tout $n \geqslant 0$, $u_n = \lambda 2^n + \mu(-3)^n$.
- 4. On souhaite montrer que $\mu=0$.
 - (a) Montrer que pour tout $n \ge 0$, $\lambda 2^n + \mu(-3)^n > 0$.
 - (b) En déduire que pour tout $n\geqslant 0$, $\lambda+\mu\left(-\frac{3}{2}\right)^n>0$.
 - (c) En déduire que pour tout $n\geqslant 0$, $\lambda-\mu\left(\frac{3}{2}\right)^{2n+1}>0$.
 - (d) On suppose que $\mu > 0$. En utilisant l'inégalité établie en 4.(c), aboutir à une contradiction.
 - (e) Adapter le raisonnement des questions 4.(c) et (d) pour montrer qu'on ne peut pas avoir $\mu < 0$.
 - (f) Conclure que $\mu = 0$.
- 5. Trouver la valeur de λ en utilisant la valeur de u_0 .
- 6. En déduire l'expression de u_n pour tout $n \in \mathbb{N}$. Que peut-on déduire sur l'expression de f?

Synthèse : Conclure