ECG1, mathématiques Corrigé du CB n°1 Décembre 2025

Corrigé CB n°1

Exercice 1

1. (a)

(b)

Ona lim z = 400 et lim e® = 400 donc par produit lim ze® = 400 et donc lim (ze® — 1) = +oo.
r— 400 r— 400 r——+00 Tr——+00

Autrement dit, [ lim g(z) = +oo].
T—+00

Les fonctions z +— x et x — e® sont dérivables sur R donc par produit, la fonction x — xe® est dérivable sur R, donc
la fonction g aussi et en particulier, la fonction g est dérivable sur R, et pour tout x dans R, :

g (x)=1xe" +ze” = (x+1)e”

Pour tout z > 0, onaxz+ 1> 0 et e” > 0 donc ¢'(x) > 0.
Ainsi, la fonction g est strictement croissante sur R_..

De plus, g(0) = —1, d’ou le tableau des variations de la fonction g sur R :
T 0 o} +o0o
Signe de
+
g'(x)

Variations v /

de g 0
-1 —

Remarque : On anticipe sur la question suivante en placant le réel «.

La fonction g est dérivable donc continue sur [0; +o0[ et strictement croissante sur [0; +oco[ d"aprés ce qui précéde donc
elle réalise une bijection de [0; +00[ sur g([0; +00[) = [—1; +o00[ d'aprés le théoréme de la bijection. Or, 0 € [—1; +o0],
donc 0 admet un unique antécédent par la fonction g i.e I'équation g(x) = 0 admet une unique solution « dans [0; +oo.
g(0)=—-1<0etg(l)=e—1>0 puisque e > 2 donc

g(0) <0<g(l) ie g(0)<g(a)<g(l).

Or, la fonction g est strictement croissante sur [0; +oo[ donc 0 < a < 1. En particulier : | € [0;1] |.

Puisque la fonction g est strictement croissante sur [0; +oo] et que g(«) = 0, le signe de g(z) est clairement donné par
le tableau suivant :

T 0 «Q +o0
Signe de
- 0 +
g'(x)
lim ¢ =1et lim In(x) = —oco donc par différence, lim (e” —In(z)) = +o0.
z—0+t z—0+t r—0+

Autrement dit : [ lim f(z) =+o0]|.
z—0t+

Pour lever la forme indéterminée dans la limite de f(z) lorsque = tend vers 4+00, on écrit astucieusement que :

<)

T T

VY >0 f(x)x<
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xr
Par croissance comparées, on sait que lim — = +oc et lim
r—+o0 I Tr——+00 €T

= 0 donc par différence,

r—+00 x x

lim z (e_ - ln(—$)> = 400 i.e[ lim f(z) = +oo}
T—r+00 xX X T—r+00

(b) La fonction x — e est dérivable sur R (fonction usuelle) donc en particulier sur ]0; +o00[ et la fonction 2 — In(x) est

dérivable sur ]0; +o00[ (fonction usuelle) donc par différence, la fonction f est dérivable sur ]0; +00[ et pour tout a2 dans
10; +o00] :

) e  lIn(x) ) . . . .
lim [ — — ——= ) = 4+ et puisque hrf T = 400, on obtient finalement par produit que
xr—r+00

ze® —1  g(x)

Ainsi, on a bien :

VYo >0 fl(z) = 9(x)

x
Pour tout « > 0, f'(x) est du signe de g(z), qui a été déterminé a la question 1.d), d'ou le tableau de variations de f
sur ]0; o0 :
x 0 o' +00
Signe de
— 0 +
f'(@)

400 400
Variations de \ /
f
fl@)

(c) Par définition, o est |'unique réel satisfaisant g(a) = 0. Donc, ae® — 1 = 0. Par suite, on a we® = 1 et puisqu'on a
justifié a la question 1.c) que « est non nul, on peut en conclure que le réel « vérifie :

1 [e3%
Z—e
«
Par conséquent :
1 1
—e®—In(a)=—+In{=)==+In(e) ==
fla)=e* ~tnfa) = - +1n (1) = T4 = 2o
En conclusion : )
fla)=a+—
3. (a) Pour tout z > 0, on a d’aprés la question 2.b) :
1
!/ T _
flay=e -

: 1 : : : :
Les fonctions = — €” et x — — sont dérivables sur ]0; +oo[ donc par différence, la fonction f’ est également dérivable
X
sur ]0; +o00[ et on a bien :

1
7 x
Vz >0 f(l’)ze +F

1
(b) Pour tout z > 0, ¢” > 0 et — > 0 donc f”(x) > 0 ce qui prouve que la fonction f est sur l'intervalle
x
10; +o0l.

4. Voici I'allure de la courbe Cy :
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\

0 1 2

5. (a) On peut proposer la fonction suivante :

1 |def f(x):
2 y=np.exp(x)—np.log(x)
3 return y

(b) On peut proposer les instructions suivantes :

1 |x=np.arange(0.0001, 2, 0.00001)
2 | plt.plot(x,f(x))

Exercice 2

1. Soit ¢ € R, on considére f la fonction constante égale a c. f est définie sur R et a valeurs dans R. Elle est continue en 0
etenl.Soitz €R, f(2%)=c= f()
En conclusion, les fonctions constantes sont [solutions du probléme poséj.

2. Soit f € E.

(a) La fonction f est définie sur R qui est bien symétrique par rapport a 0.
Soit € R, puisque f vérifie (x), on a:

Ainsi la fonction f est .

(b) Soit z € [0,1].
i. Raisonnons par récurrence, pour tout n € N, on pose P(n) : « f (an) = f(x) ».
Initialisation Pour n =0, on a f (mQO) = f (z') = f(z) donc P(0) est vraie.

Hérédité Soit n € N, supposons P(n) vraie et montrons que P(n + 1) est vraie.

On a alors
! (:172%1) =f <(:172n)2> =f (:17271') d’aprés la relation (%)

= f(z) par hypothése de récurrence

Ainsi P(n + 1) est vraie.

Conclusion D'aprés le principe de récurrence, pour tout n € N, on a f (xzn) = f(z).
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ii. Onaz?" =exp(2"In(x)). Comme z € [0,1[, on a In(z) < 0 et comme 2" 7, oo, on a, par composition :
n—-+00

. n
lim 2% =0.
n—-+oo

Comme f est continue en 0, on peut alors affirmer que :

Jim 7 (a)

Or, d'aprés la question précédente, f (xzn) = f(z) pour tout n € N. Comme lim f(x) = f(z), d'aprés |'unicité

n—-+0o0o
de la limite, on a | f(z) = f(0)|.

(c) Soit z € [1,4o0].
i. Ona f(vz) = f ((v/z)?) = f(z) d'aprés (x). En conclusion, | f(vz) = f(z) |

f(0).

ii. Raisonnons par récurrence, pour tout n € N, on pose P(n) : « f (x%") = f(z) ».

Initialisation Pour n =0, on a f (:rz%) = f(z') = f(z) donc P(0) est vraie.
Hérédité Soit n € N, supposons P(n) vraie et montrons que P(n + 1) est vraie. On a alors
Fmm) =g (o) = (Vo)

1

(zT) d'aprés la question précédente
f(z) par hypothése de récurrence
Ainsi P(n + 1) est vraie.

Conclusion D’aprés le principe de récurrence, pour tout n € N, f (x%") = f(x).

1 1
ii. Ona 27 = exp (2—nln(x)) On a alors on = 27" — 0 et comme z > 1, In(x) > 0 et donc par opérations

n—-+o0o

puis composition, lim z27 =1.

n—-+o0o

Puisque f est continue en 1, on peut affirmer que :

lim f (,732%) = f(1).

n—-+oo

Or, d’aprés la question précédente, pour tout n € N, f( %) = f(x). Comme lim f(z) = f(x), on conclut, par

n—-+o0o
unicité de la limite que | f(z) = f(1)|.

(d) On a démontré en question 2.(b) que : Vz € [0, 1], f(z)
Ainsi,

£(0) et en question 2.(c) que : Va € [1,4o0[, f(z) = f(1).
lim f(x)=f(0) et lim f(x)= f(1).
z—1 z—1t

Or la fonction f est continue en 1 par hypothése donc f(0) = f(1).

En conclusion, pour tout z € Ry, f(x) = f(1). Donc f est (constante sur R+].

(e) La fonction f est paire d'aprés la question 2.(a) donc Vz € R_, f(x) = f(—x) = f(1) d'aprés la question précédente
et car —x € R,

En conclusion, la fonction f est | constante sur R |.

3. Dans cet exercice nous avons raisonné par analyse-synthése. Dans la question 2, nous avons démontré que les seules fonction
pouvant &tre solutions du probléme étaient les fonctions constantes (analyse). Dans la question 1, nous avons montré que
les fonctions constantes étaient bien solutions du probléme (synthése).

Conclusion : Les seules solutions du problémes sont les fonctions constantes.

Probléeme 1

1. (a) La fonction g, est dérivable sur [0, +-0co] comme fonction polynomiale. Pour tout 2 > 0, ¢/, (z) = (n — 1)2" 2
Ainsi pour tout x > 0, g,,(z) > 0 et g,,(0) = 0 donc la fonction g,, est | strictement croissante sur [0, +oo[].
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(b) On remarque que g, (1) = 0 et comme la fonction g, est strictement croissante, on en déduit que :

Vo €]0,1, gn(z)=2""'—-1<0 e Vr>1, gu(z)=2""1-1>0.

La fonction g, est donc [négative sur ]0, 1] et positive sur |1, +oo[].

2. La fonction f,, est dérivable sur [0, 400 car polynomiale. Pour tout z > 0,

fi(z) = nz" l—n=n (z"71 — 1) = ngn(x)

D’aprés le signe de la fonction g,, établi précédemment, on en déduit que la fonction f, est| strictement décroissante sur |0, 1[]

et | strictement croissante sur |1 + oo[]

3. On a d'une part :
la fonction f,, est continue et strictement décroissante sur |0, 1[. De plus, f,(0) =1et f,(1)=2—-n <0carn > 3.
D’aprés le théoréme de la bijection, la fonction f,, admet donc un unique zéro a, sur ]0,1[.
On a d'autre part :
la fonction f,, est continue et strictement croissante sur |1, +oo[, fn(1) < 0 et lll)r}rqoo fn(x) = +00.

D'apres le théoréeme de la bijection, la fonction f,, admet donc un unique zéro 3, sur |1,+oo .

En conclusion, I'équation f,(x) = 0 admet deux solutions [ozn et G, telle que 0 < av,, < 1< ﬂn].

4. Etude de la suite (on)n>3.
(a) Soit n > 3 et soit z €0, 1],

foi1(@) = fu(@) =2 —(n+ Do — 2" +ne=2"(x — 1) — 2.

Or z €]0,1[ donc 2" (x — 1) < 0 et —z < 0 donc [fn+1(1:) — falz) < 0].

(b) Soit n > 3. En appliquant le résultat de la question précédente 3 «,, €]0, 1], on obtient

fry1 (an) — fn (O‘n) = fny1 (an) <0

On a donc| fnt1(an) <O

(c) Or frti(ant1) =0 donc
frt1 (O‘n) < fnt1 (anJrl) .

Comme, la fonction f,, 11 est strictement décroissante sur |0, 1[, on en déduit que

Qp > Qpi.

La suite (o), -4 est donc | décroissante |.
=

(d) Comme pour tout n > 3, o, €]0, 1], la suite («,,) est minorée par 0. Etant également décroissante, d’aprés le théoréme

de convergence monotone, elle (converge vers un réel ¢; € [0, 1]]

En outre, par décroissance de la suite, pour tout n > 3,
O0<a, <ag < 1.
Donc, par croissance de x — x™ sur R, pour tout n > 3,

0

N

(an)" < ag™.

Et comme a3 €]0, 1], 1iri1 ay = 0, on conclut ensuite, par théoréme d'encadrement, que| lim «," =0]|
n—-+0oo —

n—-+oo

(e) Raisonnons par I'absurde et supposons que ¢; > 0. Alors, par produit, na, T +o00. Or pour tout n > 3,
n—-+oo

no, = a;, + 1

En utilisant la limite montrée a la question précédente et par somme, on obtient que 11111[1 ap +1=1
n——+0o0

Comme na,, — 00, c'est absurde.
n—-+oo

Par conséquent, La suite (o), | converge vers 0.
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(f) D’aprés ce qui précéde, car lim «," =0.
n—-+o0o n—-+oo

5. Etude de la suite (8y)n>3

(a) Soit n > 3.
(e 5)-

) (2
i(g) 2! —n-2yn+l-n
2

k=
n(nfl)éi o o/ AL
et 2 2\F+1+;3<k)(ﬁ)k

:2+2\/ﬁ+2n—2—2"—2\/ﬁ+;(2)
> (V)
k

" (n) 2 2 2
S _ adui — | =>nl|
(b) Comme n > 3, 323 (k:) —(\/ﬁ)k > 0 et donc f, (1 + \/ﬁ) n > 0, on en déduit donc que [fn (1 + ﬁ) = TJ

(c) Soitn >3, ona B, €]1,+o0[ et

(=)

+

1

2z
(V)

NE

2
< Jn(Pn) = < n 1 - | -
R0 < a8 =0 << f (14 22)
La fonction f,, étant strictement croissante sur |1, +o0o[, on en déduit que

2

NG
2
(d) Or, hrf 1+ VA =1, par théoréme d’encadrement, on en déduit que la suite (5,) .
n—+oo n

Vnz=3, 1<f, <1+

Probléme 2 D’aprés HEC voie T

1.(a) Ona:
, (11
A —_(1 2)—_A+I.

(b) Montrons ce résultat par récurrence. On pose pour n € N, P(n) : « il existe (un,v,) € R? tel que A™ = up, A+ v, ».
Initialisation (n = 0) Par convention AY = I donc ug = 0 et vy = 1 conviennent. On a alors A° = ugA + vo! et la
propriété est initialisée.
Hérédité Soit n € N, on suppose P(n) vraie et montrons que P(n + 1) est vraie. On a :
ATl = A" x A
= (upA+v,I)A par hypothése de récurrence
= u, A2 + v, A
up(A+1)+v,A car A2=A+1T
(Un, + vn)A + u,l.

Posons uy,+1 = U, + vy, €t vp41 = Uy, Le couple (up41,vn41) € R? est bien défini car le couple (tun,vy,) 'est par
hypothése de récurrence et on a A" = w,, ;1 A+ v, 411. La propriété P(n + 1) est vraie.

Conclusion La propriété étant initialisée et héréditaire, elle est vraie pour tout n € N, a savoir Vn € N, il existe
(tn,vn) € R? tel que A™ = u, A+ v, I. Autrement dit, il existe deux suites (u,)nen €t (vn)nen définie par ug = 0,
vp = 1 et pour tout n € N, Up11 = Up + Uy €L Vi1 = Uy, telles que A™ = up A+ v, 1.

2. On pose pour n € N, P(n) : « up, 2 0etwv, >0 ».

Initialisation (n =0) wup=02>0et vy =120 donc P(0) est vraie et la propriété est initialisée.
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Hérédité Soit n € N, on suppose P(n) vraie et montrons que P(n + 1) est vraie. On a up41 = Uy + vy, OF uy > 0 et

vp, = 0 par hypothése de récurrence donc w41 > 0. De méme, v,41 = u, > 0. Ainsi la propriété P(n + 1) est vraie.

Conclusion La propriété étant initialisée et héréditaire, elle est vraie pour tout n € N, a savoir Vn € N, u,, > 0 et v, > 0.

3.(a)
(b)

On a Up42 = Unt1 + Vnt1, OF Vpt1 = Uy, donc (un+2 = Upt1 + unj

Python

i. Recopier et compléter la fonction suivante qui, étant donné un entier n, renvoie un vecteur de taille n contenant
toutes les valeurs de ug, ..., u,.

1 |def suite pb2(n):

2 u= np.zeros(n)

3 ul0]= 0

4 ull]= 1

5 for k in range(n-2) :

6 u[k+2]=u[k+1]+u[k]

7 return u

ii. On peut taper dans la console : plt.plot(suite pb2(30), '+).
D'aprés I'égalité de la question 3.(a), upt2 — Unt1 = Up, OF u, = 0 pour tout n € N, d'aprés la question 3. Donc

Unt2 — Unt1 = 0 soit la suite (uy,)nen est .

Raisonnons par I'absurde et supposons que la suite (u,)nen ne diverge pas vers +00. Comme elle est croissante, cela
signifie qu’elle converge vers £ € R. Comme u,, est définie par la relation w42 = up41 + up, on obtient par passage a
la limite £ = ¢4 £ soit £ = 0. Or u; =1 et (u,)nen est croissante donc ¢ = 0 est absurde. Ainsi [ lim wu, = +oo].

n—-+o0o

On a montreé a la question 1.(b) que A™ = u, A + v, I soit

A u"<1 1>+v"<0 1)<un un—l—vn)

[ .o Un—1 u
Or Uy + vy = Upy1 €t Vi1 = Uy, d'ol vy = Uy_1, ainsi Eél” = ( " " D

Un Un+1

D'aprés ce qui précede, on peut écrire :
A2n _ [ U2n-1 U2n,
U2n U2n+1

2 2 2

Upy— U U u Up—1U UpU . e .

Or A" = (A”)2 — n—1 n — n—1 T Un " 12" + o "1 Par identification des coeffi-
Un Un+1 Up—1Un + UnUp+41 Up, + Up 41

cients, on obtient le systéme :
2 2
U2p—1 = Uy _q + Uy,
U2y, = UpUp—1 + UnUn+1
ar +bz ay+ bt

i. Ona MN = (cz+dz cy + dt

). On en déduit

d(MN) = (ax + bz)(cy + dt) — (cx + dz)(ay + bt) = ad(zt — yz) + be(yz — xt).
ii. Continuons de simplifier d(M N), on factorise par xt — yz, on obtient :
d(MN) = (ad — be)(at — yz) = d(M)d(N).

iii. On pose pourn €N, P(n) : « d(M™) = [d(M)]" ».

Initialisation (n=0) d(M°) =d(I)=1 et [d(M)]° =1 donc P(0) est vraie et la propriété est initialisée.

Hérédité Soit n € N, on suppose P(n) vraie et montrons que P(n + 1) est vraie.

On a M™! = M™M donc d'aprés la question précédente et en utilisant I'hypothése de récurrence, on obtient :
d(M") = d(M™)d(M) = [d(M)]" x d(M) = [d(M)]"*

Ainsi la propriété P(n + 1) est vraie.
Conclusion La propriété étant initialisée et héréditaire, elle est vraie pour tout n € N, a savoir Vn € N, d(M") =
[d(M)]".

h) On a d(A™) = up_1tns1 — u> et d(A) = —1 donc d'aprés la question précédente, on a Up—1Upt1 — w2 = (=1)"|
+ n n
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Probleme 3 Etude d’une suite de polynémes

1. (a) D’apres I'énoncé, on a

1
16Py(x) =82z + 1)Pi(x) — Po(z) =82z + 1) <:L' + §> —2=162% + 162 + 2

1
ainsi, [PQ(.T) =z’ +z+ gj Puis,

1 1 1
16Ps(x) = 9(22 + 1) (:c2 4z + g) — (:c+ 15) = 162> 4 242% + 92 + 3

2 16

(b) Raisonnons par récurrence double.
Pour tout n € N*, on pose P(n) : « deg(P,) = n et son coefficient dominant vaut 1 ».

3 9 1
dOﬂC,[Pg( y=a23+Zux +—:c—|—32J

Initialisation (n =1) et (n = 2)

OnaPi(z)=z+ 3 donc deg(P;) = 1 et son coefficient dominant vaut 1.

1 .
Ona Py(z) =2 +x+ 3 donc deg(P») = 1 et son coefficient dominant vaut 1.
Ainsi P(1) et P(2) sont vraies.

Hérédité Soit n € N*, on suppose P(n) et P(n + 1) vraies et montrons que P(n + 2) est vraie. D'aprés la définition
de la suite, on a :

Prsalz) = 1o (8(20 + 1) Pasa(z) — Pa(@) = 5(20 4 1)Pasa(2) — 2 Pa(a).

16 16

1
Or, par hypothése de récurrence, deg(P,+1(x)) = n + 1 donc par produit, deg 5(2x+ 1) Popi(x)) = n+ 2.

Et par hypothése de récurrence encore, deg (P, (x)) = n. Ainsi, P,12(x) est la somme de deux polynémes de
degrés distincts. Son degré est donc le maximum des degrés des deux polyndmes sommeés, a savoir n + 2. Son

- . : - : 1 1
coefficient dominant, pour la méme raison, est le coefficient dominant de 5(21; + 1)Py41(x), a savoir 3 % 2 x
coef dominant de P, 41(z) = 1 par hypothése de récurrence. Donc P(n + 2) est vraie.

Conclusion La propriété étant initialisée et héréditaire, d'aprés le principe de récurrence, P(n) est vraie pour tout

n € N*, a savoir [Pn est de degré n et de coefficient dominant égal a 1].

2. (a) Raisonnons de nouveau par récurrence double. Pour tout n € N, on pose P(n) : « P,(—1—z) = (—=1)"P,(x)».
Initialisation (n =0) et (n = 1)
Ona Py(—1—z)=2et (—1)°Py(z) = 2.
OnaP(-1-z)=-1—-z+ % =—z— % et (~1)'P(2) = —Py(2) = —x — % Ainsi P(1) et P(2) sont vraies.
Hérédité Soit n € N, on suppose P(n) et P(n + 1) vraies et montrons que P(n + 2) est vraie. D'aprés la définition
de la suite, on a :
16P,12(—1—2) =812(—z—1)+1)Pyy1(—1—2) — P,(—1 —x)
8(—2z — 1)(—=1)" "' Pyq(x) — (—=1)"P, () par hypothése de récurrence
(=1)"*8(22 + 1) Poga (x) — (=1)" 2 Po(2)
(—1)™216P ()

Ainsi P(n + 2) est vraie.
Conclusion La propriété étant initialisée et héréditaire, d'aprés le principe de récurrence, P(n) est vraie pour tout
n € N, a savoir [Pn(—l —z)=(-1)"P,(z) ]

(b) Soit o € R. Supposons « racine de P,(z). On a donc P,(«) = 0 et donc d’aprés la question précédente,

0= (~1)"P,(a) = Py(~1 —a)

Conclusion : [Si « est racine de P, (x), alors —1 — o I'est aussi.]
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. - . . .
(c) Soit n € N. Evaluons la relation trouvée a la question 2.a. en ——, il vient :

1 . 1\ 1 1
P2n+1 (—1 + 5) = (—1)2 +1P277,+1 (—5) I. € P2n+1 (—5) = _P277,+1 (—5)

1
et donc Popt1 (—5) =0

. 1 .
Conclusion : [5 est racine de Pap11 pour tout n € N*

1 .
Remarque : Pour avoir I'idée de considérer oo = —g il suffit de chercher la racine de P;(z)!

3. (a) Soit (a,b) € R?. D'aprés le cours de trigonométrie, on a
cos(a — b) = cos(a) cos(b) + sin(a) sin(b) et cos(a + b) = cos(a) cos(b) — sin(a) sin(b).
Ainsi, cos(a 4+ b) + cos(a — b) = 2 cos(a) cos(b)

Conclusion : (Pour tout (a,b) € R? cos(a + b) = 2cos(a) cos(b) — cos(a — b)]

(b) Soit t € [0, g} . Raisonnons par récurrence double.

(="

= 92n-1

(=1)°

922x0—-1

Pour tout n € N, on pose P(n) : " fn(t)

cos(2nt)"

Initialisation : Pourn = 0,o0na fy(t) =2et
1

cos(2x0xt) = 2. Puis, pourn = 1,0na fi(t) = Py (— cos(t)?) =

1\l
— cos(t)? + 1.1 (1 —2cos?(t)) = f% cos(2t) et (=1) cos(2t) = f% cos(2t) donc P(0) et P(1) sont vraies.

2 2
Hérédité : Soit n € N. Supposons P(n) et P(n + 1) vraies. D’aprés |'énoncé, on a :

22—1

16 fni2(t) = 16 P10 (—cos(t)?)
=8 (—2cos(t)? + 1) Pyy1 (= cos(t)?) — P, (—cos(t)?)
=8(=2cos(t)* + 1) futr1(t) — fu(t)

_1\n+1 _1\n
=8 (—2cos(t)® +1) % cos(2(n +1)t) — (227331 cos(2nt)
B B ‘ (71)n+1 B (7 n ‘
=g cos(2t))722n+1 cos(2(n + 1)t) a1 cos(2nt)

oti I'on a utilisé les hypothéses de récurrence. Puis, en utilisant que 8 = 2 x 22 et en factorisant, puis en utilisant la

question précédente avec a = 2(n + 1)t et b = 2t, on trouve :

16 fr2(t) = (2;1—1211(2 cos(2t) cos(2(n + 1)t) — cos(2nt))
(="

= Smnti cos((2(n+1) +2)t)

(1)
= To2n-1

cos(2(n + 2)t)

ou I'on a utilisé que n et n + 2 ont la méme parité .
On a donc montré que

1 (=1t
T 16 92n-1

1 (e (~1)+

fn+2(t) - ﬁ 922n—1 T 92(n+2)-1

Donc P(n + 2) est vraie.

. , . -1)"
Conclusion : | D'apres le principe de récurrence, pour tout n € N, f,,(t) = (2271—_)1 cos(2nt).‘J

cos(2(n 4 2)t) = — ~—-——cos(2(n + 2)t) = —————cos(2(n + 2)t)

2
(c) Soit e N. On a, P,(0) =P, ( coS (g) ) . Ainsi, d'apres la question précédente,
(=" 2nm\ (=D . (DT 1
Pa(0) = o2n—1 S\ 57 ) T 921 ()" = 92n—1 — 92n-1
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ou I'on a utilisé que cos(0) = 1 et cos(m) = (—1) et donc cos(nw) = (—1)". De méme, P, (—1) = P, (— cos(0)?).
Ainsi, d'aprés la question précédente :

Conclusion : [Pour tout n € N, P,(0) = ST

4. (a) Soit n € N. Soit ¢t € [0, g}

cos(2mf):0<:>2nt:g+k:7r kelZ
m kr w(2k+1)

—t=—+4+—=——"-"kc{0,1,...;.n—-1
4dn * 2n 4dn { " }
k 2k +1 2k + 1 1 1
car % + % = W(T:r) reste dans [0, g} si et seulement si 0 < 2;: <l1lie —3 <k<n-— 3
k 2k +1
Conclusion : | Les solutions sont les ¢}, = ul + - M pour k € {0,1,...,n — 1}1
in  2n in
(b) On pose g : t — cos(t)?. Cette fonction est dérivable sur [0, g] pour tout t € [0, g] ona:
g'(t) = —2cos(t) sin(t) < 0
/ ' y ™ . . . ™
Comme ¢’ ne s'annule qu'en 0 et 3 alors g est strictement décroissante sur [0, 5}
(c) La question 4.a nous a permis de trouver (to,t1,...,tn—1,, n éléments de [0, g} vérifiant cos(2nt) = 0, c'est a dire

vérifiant fp, (tx) = Pp (f cos (tk)z) = 0. Nous avons ainsi exhibé des racines de P,, a savoir les — cos (tz)°. Puisque
les tx sont deux a deux distincts et que la fonction g de la question précédente est strictement décroissante (elle est
donc injective), les — cos (tk)2 sont également deux & deux distincts. Finalement, nous avons donc trouvé, n racines
distinctes de P, (z). Ce polyndme étant de degré n d'aprés la question 1.b, nous avons trouvé toutes ses racines (et
elles sont toutes simples!). D'apreés le cours, on a alors :

P,(z) = "1:[1 (ac — (— cos (tk)Q)) = "1:[1 <$ + cos (% + ];—Z)Q> :

k=0 k=0

n—1 2
m km
lusion : | P,(x) = —+ — .
Conclusion (z) H <x + cos <4n + 2n> )

k=0

(d) Evaluons en 0 I'égalité de la question précédente, il vient :

P, (0) = n]:[1 (cos (% + 5—2)2>

On peut alors conclure en utilisant la question 3.(c).

n—1 2
_ T km 1
Conclusion : | Pour tout n € N, kl:[O <cos (E + %) ) = Son-1-
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