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Corrigé CB no 1

Exercice 1

1. (a) On a lim
x→+∞

x = +∞ et lim
x→+∞

ex = +∞ donc par produit lim
x→+∞

xex = +∞ et donc lim
x→+∞

(xex − 1) = +∞.

Autrement dit,
✞

✝

☎

✆
lim

x→+∞
g(x) = +∞ .

(b) Les fonctions x 7→ x et x 7→ ex sont dérivables sur R donc par produit, la fonction x 7→ xex est dérivable sur R, donc
la fonction g aussi et en particulier, la fonction g est dérivable sur R+ et pour tout x dans R+ :

g′(x) = 1× ex + xex = (x + 1)ex

Pour tout x > 0, on a x+ 1 > 0 et ex > 0 donc g′(x) > 0.
Ainsi, la fonction g est strictement croissante sur R+.
De plus, g(0) = −1, d’où le tableau des variations de la fonction g sur R+ :

x

Signe de
g′(x)

Variations
de g

0 +∞

+

−1−1

+∞+∞

α

0

Remarque : On anticipe sur la question suivante en plaçant le réel α.

(c) La fonction g est dérivable donc continue sur [0; +∞[ et strictement croissante sur [0; +∞[ d’après ce qui précède donc
elle réalise une bijection de [0; +∞[ sur g([0; +∞[) = [−1;+∞[ d’après le théorème de la bijection. Or, 0 ∈ [−1;+∞[,
donc 0 admet un unique antécédent par la fonction g i.e l’équation g(x) = 0 admet une unique solution α dans [0; +∞[.
g(0) = −1 < 0 et g(1) = e− 1 > 0 puisque e > 2 donc

g(0) < 0 < g(1) i.e g(0) < g(α) < g(1).

Or, la fonction g est strictement croissante sur [0; +∞[ donc 0 < α < 1. En particulier :
✞
✝

☎
✆α ∈ [0; 1] .

(d) Puisque la fonction g est strictement croissante sur [0; +∞[ et que g(α) = 0, le signe de g(x) est clairement donné par
le tableau suivant :

x

Signe de
g′(x)

0 α +∞

− 0 +

2. (a) lim
x→0+

ex = 1 et lim
x→0+

ln(x) = −∞ donc par différence, lim
x→0+

(ex − ln(x)) = +∞.

Autrement dit :
✞

✝

☎

✆
lim

x→0+
f(x) = +∞ .

Pour lever la forme indéterminée dans la limite de f(x) lorsque x tend vers +∞, on écrit astucieusement que :

∀x > 0 f(x) = x

(

ex

x
− ln(x)

x

)
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Par croissance comparées, on sait que lim
x→+∞

ex

x
= +∞ et lim

x→+∞

ln(x)

x
= 0 donc par différence,

lim
x→+∞

(

ex

x
− ln(x)

x

)

= +∞ et puisque lim
x→+∞

x = +∞, on obtient finalement par produit que

lim
x→+∞

x

(

ex

x
− ln(x)

x

)

= +∞ i.e

✞

✝

☎

✆
lim

x→+∞
f(x) = +∞ .

(b) La fonction x 7→ ex est dérivable sur R (fonction usuelle) donc en particulier sur ]0; +∞[ et la fonction x 7→ ln(x) est
dérivable sur ]0; +∞[ (fonction usuelle) donc par différence, la fonction f est dérivable sur ]0; +∞[ et pour tout x dans
]0; +∞[ :

f ′(x) = ex − 1

x
=

xex − 1

x
=

g(x)

x

Ainsi, on a bien :

∀x > 0 f ′(x) =
g(x)

x

Pour tout x > 0, f ′(x) est du signe de g(x), qui a été déterminé à la question 1.d), d’où le tableau de variations de f

sur ]0; +∞[ :

x

Signe de
f ′(x)

Variations de
f

0 α +∞

− 0 +

+∞

f(α)f(α)

+∞+∞

(c) Par définition, α est l’unique réel satisfaisant g(α) = 0. Donc, αeα − 1 = 0. Par suite, on a αeα = 1 et puisqu’on a
justifié à la question 1.c) que α est non nul, on peut en conclure que le réel α vérifie :

1

α
= eα

Par conséquent :

f(α) = eα − ln(α) =
1

α
+ ln

(

1

α

)

=
1

α
+ ln(eα) =

1

α
+ α

En conclusion :

f(α) = α+
1

α

3. (a) Pour tout x > 0, on a d’après la question 2.b) :

f ′(x) = ex − 1

x

Les fonctions x 7→ ex et x 7→ 1

x
sont dérivables sur ]0; +∞[ donc par différence, la fonction f ′ est également dérivable

sur ]0; +∞[ et on a bien :

∀x > 0 f ′′(x) = ex +
1

x2

(b) Pour tout x > 0, ex > 0 et
1

x2
> 0 donc f ′′(x) > 0 ce qui prouve que la fonction f est

✄
✂

�
✁convexe sur l’intervalle

]0; +∞[.

4. Voici l’allure de la courbe Cf :
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1 2

1

2

3

4

5

6

7

0
α

f(α)

Cf

5. (a) On peut proposer la fonction suivante :

1 def f ( x ) :
2 y=np . exp ( x)−np . l o g ( x )
3 return y

(b) On peut proposer les instructions suivantes :

1 x=np . a range (0 . 0001 , 2 , 0 .00001)
2 p l t . p l o t ( x , f ( x ) )

Exercice 2

1. Soit c ∈ R, on considère f la fonction constante égale à c. f est définie sur R et à valeurs dans R. Elle est continue en 0
et en 1 . Soit x ∈ R, f

(

x2
)

= c = f(x).

En conclusion, les fonctions constantes sont
✞
✝

☎
✆solutions du problème posé .

2. Soit f ∈ E.

(a) La fonction f est définie sur R qui est bien symétrique par rapport à 0.
Soit x ∈ R, puisque f vérifie (⋆), on a :

f(−x) = f
(

(−x)2
)

= f
(

x2
)

= f(x)

Ainsi la fonction f est
✞
✝

☎
✆paire .

(b) Soit x ∈ [0, 1[.

i. Raisonnons par récurrence, pour tout n ∈ N, on pose P(n) : « f
(

x2n
)

= f(x) ».

Initialisation Pour n = 0, on a f
(

x20
)

= f
(

x1
)

= f(x) donc P(0) est vraie.

Hérédité Soit n ∈ N, supposons P(n) vraie et montrons que P(n+ 1) est vraie.
On a alors

f
(

x2n+1
)

= f

(

(

x2n
)2
)

= f
(

x2n
)

d’après la relation (⋆)

= f(x) par hypothèse de récurrence

Ainsi P(n+ 1) est vraie.

Conclusion D’après le principe de récurrence, pour tout n ∈ N, on a f
(

x2n
)

= f(x).
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ii. On a x2n = exp (2n ln(x)). Comme x ∈ [0, 1 [ , on a ln(x) < 0 et comme 2n −→
n→+∞

+∞, on a, par composition :

lim
n→+∞

x2n = 0.

Comme f est continue en 0, on peut alors affirmer que :

lim
n→+∞

f
(

x2n
)

= f(0).

Or, d’après la question précédente, f
(

x2n
)

= f(x) pour tout n ∈ N. Comme lim
n→+∞

f(x) = f(x), d’après l’unicité

de la limite, on a
✞
✝

☎
✆f(x) = f(0) .

(c) Soit x ∈ [1,+∞[.

i. On a f(
√
x) = f

(

(
√
x)2
)

= f(x) d’après (⋆). En conclusion,
✞
✝

☎
✆f(

√
x) = f(x) .

ii. Raisonnons par récurrence, pour tout n ∈ N, on pose P(n) : « f
(

x
1
2n

)

= f(x) ».

Initialisation Pour n = 0, on a f
(

x
1

20

)

= f
(

x1
)

= f(x) donc P(0) est vraie.

Hérédité Soit n ∈ N, supposons P(n) vraie et montrons que P(n+ 1) est vraie. On a alors

f
(

x
1

2n+1

)

= f
(

x
1
2n

×
1
2

)

= f
(√

x
1

2n

)

= f
(

x
1
2n

)

d’après la question précédente

= f(x) par hypothèse de récurrence

Ainsi P(n+ 1) est vraie.

Conclusion D’après le principe de récurrence, pour tout n ∈ N, f
(

x
1

2n

)

= f(x).

iii. On a x
1

2n = exp

(

1

2n
ln(x)

)

. On a alors
1

2n
= 2−n −→

n→+∞
0 et comme x > 1, ln(x) > 0 et donc par opérations

puis composition, lim
n→+∞

x
1
2n = 1.

Puisque f est continue en 1 , on peut affirmer que :

lim
n→+∞

f
(

x
1
2n

)

= f(1).

Or, d’après la question précédente, pour tout n ∈ N, f
(

x
1
2n

)

= f(x). Comme lim
n→+∞

f(x) = f(x), on conclut, par

unicité de la limite que
✞
✝

☎
✆f(x) = f(1) .

(d) On a démontré en question 2.(b) que : ∀x ∈ [0, 1[, f(x) = f(0) et en question 2.(c) que : ∀x ∈ [1,+∞[, f(x) = f(1).
Ainsi,

lim
x→1−

f(x) = f(0) et lim
x→1+

f(x) = f(1).

Or la fonction f est continue en 1 par hypothèse donc f(0) = f(1).
En conclusion, pour tout x ∈ R+, f(x) = f(1). Donc f est

✞
✝

☎
✆constante sur R+ .

(e) La fonction f est paire d’après la question 2.(a) donc ∀x ∈ R−, f(x) = f(−x) = f(1) d’après la question précédente
et car −x ∈ R+.
En conclusion, la fonction f est

✄
✂

�
✁constante sur R .

3. Dans cet exercice nous avons raisonné par analyse-synthèse. Dans la question 2, nous avons démontré que les seules fonction
pouvant être solutions du problème étaient les fonctions constantes (analyse). Dans la question 1 , nous avons montré que
les fonctions constantes étaient bien solutions du problème (synthèse).
Conclusion : Les seules solutions du problèmes sont les fonctions constantes.

Problème 1

1. (a) La fonction gn est dérivable sur [0,+∞[ comme fonction polynomiale. Pour tout x > 0, g′n(x) = (n− 1)xn−2.

Ainsi pour tout x > 0, g′n(x) > 0 et g′n(0) = 0 donc la fonction gn est
✞
✝

☎
✆strictement croissante sur [0,+∞[ .
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(b) On remarque que gn(1) = 0 et comme la fonction gn est strictement croissante, on en déduit que :

∀x ∈]0, 1[, gn(x) = xn−1 − 1 < 0 et ∀x > 1, gn(x) = xn−1 − 1 > 0.

La fonction gn est donc
✞
✝

☎
✆négative sur ]0, 1[ et positive sur ]1,+∞[ .

2. La fonction fn est dérivable sur [0,+∞[ car polynomiale. Pour tout x > 0,

f ′
n(x) = nxn−1 − n = n

(

xn−1 − 1
)

= ngn(x)

D’après le signe de la fonction gn établi précédemment, on en déduit que la fonction fn est
✞
✝

☎
✆strictement décroissante sur ]0, 1[

et
✞
✝

☎
✆strictement croissante sur ]1 +∞[ .

3. On a d’une part :
la fonction fn est continue et strictement décroissante sur ]0, 1[. De plus, fn(0) = 1 et fn(1) = 2− n < 0 car n > 3.
D’après le théorème de la bijection, la fonction fn admet donc un unique zéro αn sur ]0, 1[.
On a d’autre part :
la fonction fn est continue et strictement croissante sur ]1,+∞[, fn(1) < 0 et lim

x→+∞
fn(x) = +∞.

D’après le théorème de la bijection, la fonction fn admet donc un unique zéro βn sur ]1,+∞ [ .

En conclusion, l’équation fn(x) = 0 admet deux solutions
✞
✝

☎
✆αn et βn telle que 0 < αn < 1 < βn .

4. Etude de la suite (αn)n>3.

(a) Soit n > 3 et soit x ∈]0, 1[,

fn+1(x)− fn(x) = xn+1 − (n+ 1)x− xn + nx = xn(x− 1)− x.

Or x ∈]0, 1[ donc xn(x− 1) < 0 et −x < 0 donc
✞
✝

☎
✆fn+1(x) − fn(x) < 0 .

(b) Soit n > 3. En appliquant le résultat de la question précédente à αn ∈] 0, 1[, on obtient

fn+1 (αn)− fn (αn) = fn+1 (αn) < 0

On a donc
✞
✝

☎
✆fn+1(αn) < 0 .

(c) Or fn+1(αn+1) = 0 donc
fn+1 (αn) < fn+1 (αn+1) .

Comme, la fonction fn+1 est strictement décroissante sur ]0, 1[, on en déduit que

αn > αn+1.

La suite (αn)n>3 est donc
✄
✂

�
✁décroissante .

(d) Comme pour tout n > 3, αn ∈]0, 1[, la suite (αn) est minorée par 0. Etant également décroissante, d’après le théorème

de convergence monotone, elle
✞
✝

☎
✆converge vers un réel ℓ1 ∈ [0, 1] .

En outre, par décroissance de la suite, pour tout n > 3,

0 6 αn 6 α3 < 1.

Donc, par croissance de x 7→ xn sur R+, pour tout n > 3,

0 6 (αn)
n
6 α3

n.

Et comme α3 ∈]0, 1[, lim
n→+∞

αn
3 = 0, on conclut ensuite, par théorème d’encadrement, que

✞

✝

☎

✆
lim

n→+∞
αn

n = 0 .

(e) Raisonnons par l’absurde et supposons que ℓ1 > 0. Alors, par produit, nαn −→
n→+∞

+∞. Or pour tout n > 3,

nαn = αn
n + 1

En utilisant la limite montrée à la question précédente et par somme, on obtient que lim
n→+∞

αn
n + 1 = 1.

Comme nαn −→
n→+∞

+∞, c’est absurde.

Par conséquent, La suite (αn)n
✞
✝

☎
✆converge vers 0 .
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(f) D’après ce qui précède,
✞

✝

☎

✆
lim

n→+∞
nαn = 1 car lim

n→+∞
αn

n = 0.

5. Etude de la suite (βn)n>3

(a) Soit n > 3.

fn

(

1 +
2√
n

)

− n =

(

1 +
2√
n

)n

− n

(

1 +
2√
n

)

+ 1− n

=

n
∑

k=0

(

n

k

)

2k

(
√
n)k

− n− 2
√
n+ 1− n

= 1 + n
2√
n
+

n(n− 1)

2

4

n
− 2n− 2

√
n+ 1 +

n
∑

k=3

(

n

k

)

2k

(
√
n)k

= 2 + 2
√
n+ 2n− 2− 2n− 2

√
n+

n
∑

k=3

(

n

k

)

2k

(
√
n)k

=
n
∑

k=3

(

n

k

)

2k

(
√
n)k

(b) Comme n > 3,
n
∑

k=3

(

n

k

)

2k

(
√
n)k

> 0 et donc fn

(

1 +
2√
n

)

− n > 0, on en déduit donc que

✎

✍

☞

✌
fn

(

1 +
2√
n

)

> n .

(c) Soit n > 3, on a βn ∈]1,+∞[ et

fn(1) < fn(βn) = 0 6 n 6 fn

(

1 +
2√
n

)

.

La fonction fn étant strictement croissante sur ]1,+∞[, on en déduit que

∀n > 3, 1 6 βn 6 1 +
2√
n

(d) Or, lim
n→+∞

1 +
2√
n
= 1, par théorème d’encadrement, on en déduit que la suite (βn)

✞
✝

☎
✆converge vers 1 .

Problème 2 D’après HEC voie T

1. (a) On a :

A2 =

(

1 1
1 2

)

= A+ I.

(b) Montrons ce résultat par récurrence. On pose pour n ∈ N, P(n) : « il existe (un, vn) ∈ R
2 tel que An = unA+ vnI ».

Initialisation (n = 0) Par convention A0 = I donc u0 = 0 et v0 = 1 conviennent. On a alors A0 = u0A+ v0I et la
propriété est initialisée.

Hérédité Soit n ∈ N, on suppose P(n) vraie et montrons que P(n+ 1) est vraie. On a :

An+1 = An ×A

= (unA+ vnI)A par hypothèse de récurrence

= unA
2 + vnA

= un(A+ I) + vnA car A2 = A+ I

= (un + vn)A+ unI.

Posons un+1 = un + vn et vn+1 = un. Le couple (un+1, vn+1) ∈ R
2 est bien défini car le couple (un, vn) l’est par

hypothèse de récurrence et on a An+1 = un+1A+ vn+1I. La propriété P(n+ 1) est vraie.

Conclusion La propriété étant initialisée et héréditaire, elle est vraie pour tout n ∈ N, à savoir ∀n ∈ N, il existe
(un, vn) ∈ R

2 tel que An = unA+ vnI. Autrement dit, il existe deux suites (un)n∈N et (vn)n∈N définie par u0 = 0,
v0 = 1 et pour tout n ∈ N, un+1 = un + vn et vn+1 = un telles que An = unA+ vnI.

2. On pose pour n ∈ N, P(n) : « un > 0 et vn > 0 ».

Initialisation (n = 0) u0 = 0 > 0 et v0 = 1 > 0 donc P(0) est vraie et la propriété est initialisée.
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Hérédité Soit n ∈ N, on suppose P(n) vraie et montrons que P(n + 1) est vraie. On a un+1 = un + vn, or un > 0 et
vn > 0 par hypothèse de récurrence donc un+1 > 0. De même, vn+1 = un > 0. Ainsi la propriété P(n+ 1) est vraie.

Conclusion La propriété étant initialisée et héréditaire, elle est vraie pour tout n ∈ N, à savoir ∀n ∈ N, un > 0 et vn > 0.

3. (a) On a un+2 = un+1 + vn+1, or vn+1 = un donc
✞
✝

☎
✆un+2 = un+1 + un .

(b) Python

i. Recopier et compléter la fonction suivante qui, étant donné un entier n, renvoie un vecteur de taille n contenant
toutes les valeurs de u0, . . . , un.

1 def su i te_pb2 ( n ) :
2 u= np . z e r o s ( n )
3 u [0 ]= 0
4 u [1 ]= 1
5 f o r k i n range (n−2) :
6 u [ k+2]=u [ k+1]+u [ k ]
7 return u

ii. On peut taper dans la console : plt.plot(suite_pb2(30), ’+’).

(c) D’après l’égalité de la question 3.(a), un+2 − un+1 = un, or un > 0 pour tout n ∈ N, d’après la question 3. Donc
un+2 − un+1 > 0 soit la suite (un)n∈N est

✄
✂

�
✁croissante .

(d) Raisonnons par l’absurde et supposons que la suite (un)n∈N ne diverge pas vers +∞. Comme elle est croissante, cela
signifie qu’elle converge vers ℓ ∈ R. Comme un est définie par la relation un+2 = un+1 + un, on obtient par passage à
la limite ℓ = ℓ+ ℓ soit ℓ = 0. Or u1 = 1 et (un)n∈N est croissante donc ℓ = 0 est absurde. Ainsi

✞

✝

☎

✆
lim

n→+∞
un = +∞ .

(e) On a montré à la question 1.(b) que An = unA+ vnI soit

An = un

(

0 1
1 1

)

+ vn

(

1 0
0 1

)

=

(

vn un

un un + vn

)

Or un + vn = un+1 et vn+1 = un d’où vn = un−1, ainsi

✎

✍

☞

✌
An =

(

un−1 un

un un+1

)

.

(f) D’après ce qui précède, on peut écrire :

A2n =

(

u2n−1 u2n

u2n u2n+1

)

.

Or A2n = (An)2 =

((

un−1 un

un un+1

))2

=

(

u2
n−1 + u2

n un−1un + unun+1

un−1un + unun+1 u2
n + u2

n+1

)

. Par identification des coeffi-

cients, on obtient le système :
{

u2n−1 = u2
n−1 + u2

n

u2n = unun−1 + unun+1

(g) i. On a MN =

(

ax+ bz ay + bt

cx+ dz cy + dt

)

. On en déduit

d(MN) = (ax+ bz)(cy + dt)− (cx+ dz)(ay + bt) = ad(xt − yz) + bc(yz − xt).

ii. Continuons de simplifier d(MN), on factorise par xt− yz, on obtient :

d(MN) = (ad− bc)(xt− yz) = d(M)d(N).

iii. On pose pour n ∈ N, P(n) : « d(Mn) = [d(M)]n ».

Initialisation (n = 0) d(M0) = d(I) = 1 et [d(M)]0 = 1 donc P(0) est vraie et la propriété est initialisée.

Hérédité Soit n ∈ N, on suppose P(n) vraie et montrons que P(n+ 1) est vraie.
On a Mn+1 = MnM donc d’après la question précédente et en utilisant l’hypothèse de récurrence, on obtient :

d(Mn+1) = d(Mn)d(M) = [d(M)]n × d(M) = [d(M)]n+1

Ainsi la propriété P(n+ 1) est vraie.

Conclusion La propriété étant initialisée et héréditaire, elle est vraie pour tout n ∈ N, à savoir ∀n ∈ N, d(Mn) =
[d(M)]n.

(h) On a d(An) = un−1un+1 − u2
n et d(A) = −1 donc d’après la question précédente, on a

✞
✝

☎
✆un−1un+1 − u2

n = (−1)n .
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Problème 3 Etude d’une suite de polynômes

1. (a) D’après l’énoncé, on a

16P2(x) = 8(2x+ 1)P1(x)− P0(x) = 8(2x+ 1)

(

x+
1

2

)

− 2 = 16x2 + 16x+ 2

ainsi,

☛

✡

✟

✠
P2(x) = x2 + x+

1

8
. Puis,

16P3(x) = 9(2x+ 1)

(

x2 + x+
1

8

)

−
(

x+ 1
1

2

)

= 16x3 + 24x2 + 9x+
1

2

donc,

☛

✡

✟

✠
P3(x) = x3 +

3

2
x2 +

9

16
x+

1

32
.

(b) Raisonnons par récurrence double.
Pour tout n ∈ N

∗, on pose P(n) : « deg(Pn) = n et son coefficient dominant vaut 1 ».

Initialisation (n = 1) et (n = 2)

On a P1(x) = x+
1

2
donc deg(P1) = 1 et son coefficient dominant vaut 1.

On a P2(x) = x2 + x+
1

8
donc deg(P2) = 1 et son coefficient dominant vaut 1.

Ainsi P(1) et P(2) sont vraies.

Hérédité Soit n ∈ N
∗, on suppose P(n) et P(n+ 1) vraies et montrons que P(n+ 2) est vraie. D’après la définition

de la suite, on a :

Pn+2(x) =
1

16
(8(2x+ 1)Pn+1(x) − Pn(x)) =

1

2
(2x+ 1)Pn+1(x)−

1

16
Pn(x).

Or, par hypothèse de récurrence, deg(Pn+1(x)) = n + 1 donc par produit, deg

(

1

2
(2x+ 1) Pn+1(x)) = n + 2.

Et par hypothèse de récurrence encore, deg (Pn(x)) = n. Ainsi, Pn+2(x) est la somme de deux polynômes de
degrés distincts. Son degré est donc le maximum des degrés des deux polynômes sommés, à savoir n + 2. Son

coefficient dominant, pour la même raison, est le coefficient dominant de
1

2
(2x + 1)Pn+1(x), à savoir

1

2
× 2 ×

coef dominant de Pn+1(x) = 1 par hypothèse de récurrence. Donc P(n+ 2) est vraie.

Conclusion La propriété étant initialisée et héréditaire, d’après le principe de récurrence, P(n) est vraie pour tout

n ∈ N
∗, à savoir

✞
✝

☎
✆Pn est de degré n et de coefficient dominant égal à 1 .

2. (a) Raisonnons de nouveau par récurrence double. Pour tout n ∈ N, on pose P(n) : « Pn(−1− x) = (−1)nPn(x)».

Initialisation (n = 0) et (n = 1)
On a P0(−1− x) = 2 et (−1)0P0(x) = 2.

On a P1(−1− x) = −1− x+
1

2
= −x− 1

2
et (−1)1P1(x) = −P1(x) = −x− 1

2
. Ainsi P(1) et P(2) sont vraies.

Hérédité Soit n ∈ N, on suppose P(n) et P(n + 1) vraies et montrons que P(n + 2) est vraie. D’après la définition
de la suite, on a :

16Pn+2(−1− x) = 8(2(−x− 1) + 1)Pn+1(−1− x)− Pn(−1− x)

= 8(−2x− 1)(−1)n+1Pn+1(x)− (−1)nPn(x) par hypothèse de récurrence

= (−1)n+28(2x+ 1)Pn+1(x) − (−1)n+2Pn(x)

= (−1)n+216Pn+2(x)

Ainsi P(n+ 2) est vraie.

Conclusion La propriété étant initialisée et héréditaire, d’après le principe de récurrence, P(n) est vraie pour tout

n ∈ N, à savoir
✞
✝

☎
✆Pn(−1− x) = (−1)nPn(x) .

(b) Soit α ∈ R. Supposons α racine de Pn(x). On a donc Pn(α) = 0 et donc d’après la question précédente,

0 = (−1)nPn(α) = Pn(−1− α)

Conclusion :
✞
✝

☎
✆Si α est racine de Pn(x), alors −1− α l’est aussi.
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(c) Soit n ∈ N. Évaluons la relation trouvée à la question 2.a. en −1

2
, il vient :

P2n+1

(

−1 +
1

2

)

= (−1)2n+1P2n+1

(

−1

2

)

i. e P2n+1

(

−1

2

)

= −P2n+1

(

−1

2

)

et donc P2n+1

(

−1

2

)

= 0

Conclusion :

☛

✡

✟

✠
−1

2
est racine de P2n+1 pour tout n ∈ N

∗

Remarque : Pour avoir l’idée de considérer α = −1

2
, il suffit de chercher la racine de P1(x) !

3. (a) Soit (a, b) ∈ R
2. D’après le cours de trigonométrie, on a

cos(a− b) = cos(a) cos(b) + sin(a) sin(b) et cos(a+ b) = cos(a) cos(b)− sin(a) sin(b).
Ainsi, cos(a+ b) + cos(a− b) = 2 cos(a) cos(b)

Conclusion :
✞
✝

☎
✆Pour tout (a, b) ∈ R

2, cos(a+ b) = 2 cos(a) cos(b)− cos(a− b)

(b) Soit t ∈
[

0,
π

2

]

. Raisonnons par récurrence double.

Pour tout n ∈ N, on pose P(n) : nfn(t) =
(−1)n

22n−1
cos(2nt)n

Initialisation : Pour n = 0, on a f0(t) = 2 et
(−1)0

22×0−1
cos(2×0×t) = 2. Puis, pour n = 1, on a f1(t) = P1

(

− cos(t)2
)

=

− cos(t)2 +
1

2
=

1

2

(

1− 2 cos2(t)
)

= −1

2
cos(2t) et

(−1)1

22−1
cos(2t) = −1

2
cos(2t) donc P(0) et P(1) sont vraies.

Hérédité : Soit n ∈ N. Supposons P(n) et P(n+ 1) vraies. D’après l’énoncé, on a :

16fn+2(t) = 16Pn+2

(

− cos(t)2
)

= 8
(

−2 cos(t)2 + 1
)

Pn+1

(

− cos(t)2
)

− Pn

(

− cos(t)2
)

= 8
(

−2 cos(t)2 + 1
)

fn+1(t)− fn(t)

= 8
(

−2 cos(t)2 + 1
) (−1)n+1

22(n+1)−1
cos(2(n+ 1)t)− (−1)n

22n−1
cos(2nt)

= 8(− cos(2t))
(−1)n+1

22n+1
cos(2(n+ 1)t)− (−1)n

22n−1
cos(2nt)

où l’on a utilisé les hypothèses de récurrence. Puis, en utilisant que 8 = 2× 22 et en factorisant, puis en utilisant la
question précédente avec a = 2(n+ 1)t et b = 2t, on trouve :

16fn+2(t) =
(−1)n

22n−1
(2 cos(2t) cos(2(n+ 1)t)− cos(2nt))

=
(−1)n

22n−1
cos((2(n+ 1) + 2)t)

=
(−1)n+2

22n−1
cos(2(n+ 2)t)

où l’on a utilisé que n et n+ 2 ont la même parité .
On a donc montré que

fn+2(t) =
1

16

(−1)n+2

22n−1
cos(2(n+ 2)t) =

1

24
(−1)n+2

22n−1
cos(2(n+ 2)t) =

(−1)n+2

22(n+2)−1
cos(2(n+ 2)t)

Donc P(n+ 2) est vraie.

Conclusion :

☛

✡

✟

✠
D’après le principe de récurrence, pour tout n ∈ N, fn(t) =

(−1)n

22n−1
cos(2nt).

(c) Soit ∈ N. On a, Pn(0) = Pn

(

− cos
(π

2

)2
)

. Ainsi, d’après la question précédente,

Pn(0) =
(−1)n

22n−1
cos

(

2nπ

2

)

=
(−1)n

22n−1
(−1)n =

(−1)2n

22n−1
=

1

22n−1
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où l’on a utilisé que cos(0) = 1 et cos(π) = (−1) et donc cos(nπ) = (−1)n. De même, Pn(−1) = Pn

(

− cos(0)2
)

.
Ainsi, d’après la question précédente :

Pn(−1) =
(−1)n

22n−1
cos(0) =

(−1)n

22n−1

Conclusion :

☛

✡

✟

✠
Pour tout n ∈ N, Pn(0) =

1

22n−1
et Pn(−1) =

(−1)n

22n−1

4. (a) Soit n ∈ N. Soit t ∈
[

0,
π

2

]

cos(2nt) = 0 ⇐⇒ 2nt =
π

2
+ kπ k ∈ Z

⇐⇒ t =
π

4n
+

kπ

2n
=

π(2k + 1)

4n
, k ∈ {0, 1, . . . , n− 1}

car
π

4n
+

kπ

2n
=

π(2k + 1)

4n
reste dans

[

0,
π

2

]

si et seulement si 0 6
2k + 1

2n
6 1 i.e −1

2
6 k 6 n− 1

2
.

Conclusion :

☛

✡

✟

✠
Les solutions sont les tk =

π

4n
+

kπ

2n
=

π(2k + 1)

4n
, pour k ∈ {0, 1, . . . , n− 1}

(b) On pose g : t 7→ cos(t)2. Cette fonction est dérivable sur
[

0,
π

2

]

pour tout t ∈
[

0,
π

2

]

, on a :

g′(t) = −2 cos(t) sin(t) 6 0

Comme g′ ne s’annule qu’en 0 et
π

2
alors g est strictement décroissante sur

[

0,
π

2

]

.

(c) La question 4.a nous a permis de trouver (t0, t1, . . . , tn−1, , n éléments de
[

0,
π

2

]

vérifiant cos(2nt) = 0, c’est à dire

vérifiant fn (tk) = Pn

(

− cos (tk)
2
)

= 0. Nous avons ainsi exhibé des racines de Pn, à savoir les − cos (tk)
2. Puisque

les tk sont deux à deux distincts et que la fonction g de la question précédente est strictement décroissante (elle est
donc injective), les − cos (tk)

2 sont également deux à deux distincts. Finalement, nous avons donc trouvé, n racines
distinctes de Pn(x). Ce polynôme étant de degré n d’après la question 1.b, nous avons trouvé toutes ses racines (et
elles sont toutes simples !). D’après le cours, on a alors :

Pn(x) =

n−1
∏

k=0

(

x−
(

− cos (tk)
2
))

=

n−1
∏

k=0

(

x+ cos

(

π

4n
+

kπ

2n

)2
)

.

Conclusion :

✎

✍

☞

✌
Pn(x) =

n−1
∏

k=0

(

x+ cos

(

π

4n
+

kπ

2n

)2
)

.

(d) Évaluons en 0 l’égalité de la question précédente, il vient :

Pn(0) =

n−1
∏

k=0

(

cos

(

π

4n
+

kπ

2n

)2
)

On peut alors conclure en utilisant la question 3.(c).

Conclusion :

✎

✍

☞

✌
Pour tout n ∈ N,

n−1
∏

k=0

(

cos

(

π

4n
+

kπ

2n

)2
)

=
1

22n−1
.

Lycée Charles de Gaulle, Caen 10/10 © M. Fontaine


