Polynômes

Exercice 1 (♣) —

Déterminer les degrés et coefficients dominants des polynômes suivants pour un entier $n \geq 2$:

- 1. $Q: x \mapsto \prod_{k=0}^{n} (2x k)$,
- 2. $R: x \mapsto (x+1)^n (x-1)^n$,
- 3. $P: x \mapsto (x+1)^{2n} x^{2n-1}(x+2n)$ pour $n \ge 2$.

Exercice 2 (♣) —

Soit P un polynôme de degré $n\in\mathbb{N}.$ Déterminer le degré du polynôme Q dans les cas suivants :

- 1. $\forall x \in \mathbb{R}, Q(x) = xP(x) P'(x),$
- 2. $\forall x \in \mathbb{R}, Q(x) = P(x) xP'(x)$.

Exercice 3 (♣)

Déterminer tous les polynômes $P \in \mathbb{R}_2[x]$ tels que

$$\forall x \in \mathbb{R}, \quad P(x) = \frac{1}{2}xP'(x).$$

Exercice 4 (♠)

Le but de l'exercice est de déterminer tous les polynômes $P \in \mathbb{R}[x]$ qui vérifient :

$$\forall x \in \mathbb{R}, \quad P(x^2) = (x^2 + 1) P(x) \tag{1}$$

- 1. Quelques exemples:
 - (a) Le polynôme $P: x \mapsto x^3 + x + 1$ est-il solution?
 - (b) Le polynôme nul est-il solution?
 - (c) Montrer alors qu'aucun polynôme de degré 1 ne peut être solution.
- 2. **Analyse du problème :** soit P un polynôme non-nul solution de l'équation (1).
 - (a) En posant $n = \deg(P)$, déterminer la seule valeur de n possible.
 - (b) En déduire alors tous les candidats.
- 3. Synthèse du problème : déterminer toutes les solutions.

Exercice 5 (♥) —

Soit P le polynôme défini par :

$$\forall x \in \mathbb{R}$$
 $P(x) = x^4 - 4x^3 + 10x^2 - 12x + 8.$

Montrer que P+1 est le carré d'un polynôme Q à déterminer. En déduire une factorisation en produit de facteurs irréductibles du polynôme P.

Exercice 6 (♥) —

Soit P le polynôme défini par :

$$\forall x \in \mathbb{R}$$
 $P(x) = 8x^3 - 12x^2 + 6x + 7.$

Montrer que P-8 est le cube d'un polynôme Q à déterminer. (\spadesuit) En déduire une factorisation en produit de facteurs irréductibles du polynôme P.

Exercice 7 (♣)

Soit P le polynôme défini par :

$$\forall x \in \mathbb{R} \qquad P(x) = x^3 - 7x^2 + 11x - 2.$$

Déterminer une racine évidente du polynôme P et en déduire une factorisation en produit de facteurs irréductibles du polynôme P.

Exercice 8 (♣) -

Soit P le polynôme défini par :

$$\forall x \in \mathbb{R}$$
 $P(x) = x^4 + x^3 - 3x^2 - 4x - 4.$

Déterminer une racine évidente du polynôme P et en déduire une factorisation en produit de facteurs irréductibles du polynôme P.

Exercice 9 () -

Soit $n \in \mathbb{N}$, déterminer le reste de la division euclidienne de :

- 1. $x^n \text{ par } x^2 3x + 2$
- 2. x^n par $(x-1)^2$
- 3. $(x-1)^n + (x+1)^n 1$ par $x^2 1$

Exercice 10 (♣)

Soit $P(x) = x^4 + x^3 - 4x^2 + x + 1 \in \mathbb{R}[x]$.

- 1. Vérifier que 1 est racine double de P.
- 2. Ecrire la formule de Taylor pour P en 1.
- 3. Calculer le quotient de P par $(x-1)^2$.
- 4. Factoriser P dans $\mathbb{R}[x]$.

Exercice 11 (♣) —

Résoudre dans \mathbb{R} l'équation :

$$2x^3 - 3x^2 + 5x - 4 = 0.$$

Exercice 12 (♣) —

Soit f la fonction définie par :

$$\forall x \in \mathbb{R} \qquad f(x) = \left| -x^2 + 5x - 7 \right|.$$

La fonction f est-elle un polynôme?

Exercice 13 (♥)

Déterminer un polynôme de degré 3 tel que :

$$\forall x \in \mathbb{R}$$
 $P(x+1) - P(x) = x^2$

En déduire une nouvelle méthode pour démontrer la formule

$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$

(lacklos) En utilisant une méthode similaire mettant en scène un polynôme Q de degré 5, déterminer une formule pour

$$\sum_{k=0}^{n} k^4.$$

Exercice 14 (♥) -

Résoudre dans \mathbb{R} l'équation $e^{2x} - 2e^x + 6e^{-x} = 5$.

Exercice 15 (♦) —

Soit $n \geq 2$. Le but de l'exercice est de calculer

$$S_n = \sum_{k=2}^n \frac{k-5}{k(k^2-1)}.$$

1. Déterminer $a,b,c\in\mathbb{R}$ tels que

$$\forall k \ge 2, \qquad \frac{k-5}{k(k^2-1)} = \frac{a}{k-1} + \frac{b}{k} + \frac{c}{k+1}.$$

2. En déduire la valeur de S_n en fonction de n.

Exercice 16 (♥)

Soit $n\in\mathbb{N}^*.$ On pose P le polynôme définie sur \mathbb{R} par $P:x\to (x+1)^n.$ Calculer de deux manières différentes la dérivée

$$P'$$
 de P . En déduire la somme $\sum_{k=0}^{n} k \binom{n}{k}$.

Exercice 17 (♣) —

Soit
$$P(x) = -x^4 + 2x^3 - x + 2$$
.

- 1. Montrer que P possède deux racines évidentes.
- 2. Résoudre l'inéquation $P(x) \ge 0$.
- 3. Résoudre l'inéquation

$$-(\ln(x))^4 + 2(\ln(x))^3 - \ln(x) > -2.$$

Exercice 18 (♥) —

Soit $P, Q \in \mathbb{R}[x]$ vérifiant :

$$\forall x \in \mathbb{R}, \quad P(x)\cos(x) + Q(x)\sin(x) = 0.$$

Montrer que P = Q = 0.

Exercice 19 (♣) —

Montrer que $x^2 + 2x - 3$ divise $x^3 + x^2 - 5x + 3$ dans $\mathbb{R}[x]$.

Exercice 20 ()

Soit la suite de polynômes (P_n) définie par :

$$\forall x \in \mathbb{R}, \quad P_1(x) = 1 + x, \quad P_2(x) = 1 + x + \frac{x(x+1)}{2}$$

et pour tout entier $n \geq 3, \forall x \in \mathbb{R}$,

$$P_n(x) = 1 + \frac{x}{1!} + \frac{x(x+1)}{2!} + \ldots + \frac{x(x+1)\ldots(x+n-1)}{n!}.$$

- 1. A l'aide de la définition, écrire les polynômes P_3 et P_4 .
- 2. Déterminer la relation de récurrence entre P_{n+1} et P_n pour $n \geq 1$.
- 3. Factoriser le polynôme P_2 . Bonus : faire de même pour P_3 .
- 4. Montrer alors que pour tout $n \ge 1$:

$$\forall x \in \mathbb{R}, \quad P_n(x) = \frac{1}{n!} \prod_{k=1}^n (x+k).$$

Exercice 21 ()

1. On définit sur $I=\left]0, \frac{\pi}{2}\right[$ les fonctions f et g par :

$$f(x) = \frac{1}{3}(2\sin(x) + \tan(x))$$

et

$$g(x) = \frac{3\sin(x)}{2 + \cos(x)}.$$

(a) Factoriser dans $\mathbb{R}[x]$ le polynôme P défini par :

$$\forall x \in \mathbb{R}, \quad P(x) = 2x^3 - 3x^2 + 1.$$

En déduire son signe sur \mathbb{R} .

(b) On pose u(x)=f(x)-x pour tout $x\in I$. Justifier que u est dérivable sur I et que pour tout $x\in I$,

$$u'(x) = \frac{P(\cos(x))}{3\cos^2(x)}.$$

- (c) En déduire les variations de u sur I.
- (d) On pose v(x)=x-g(x) pour tout $x\in I$. Justifier qu'il existe un polynôme Q de $\mathbb{R}[x]$, de degré deux, tel que pour tout $x\in I$,

$$v'(x) = \frac{Q(\cos(x))}{(2 + \cos x)^2}.$$

- (e) En déduire les variations de v sur I.
- (f) Montrer que : $\forall x \in I, g(x) < x < f(x)$.
- 2. (a) En utilisant le fait que $\frac{\pi}{12} = \frac{\pi}{4} \frac{\pi}{6}$, calculer $\cos\left(\frac{\pi}{12}\right)$, $\sin\left(\frac{\pi}{12}\right)$ et $\tan\left(\frac{\pi}{12}\right)$.
 - (b) Déduire de la question 1.(f) un encadrement de π .

- Du trèfle à brouter...
- ▼ À connaître par coeur.
- Qui s'y frotte s'y pique!
- Calculatoire, risque de rester sur le carreau!