Calcul matriciel

Exercice 1 (♣)

Écrire les matrice suivantes :

$$A = (i - j + 1)_{\substack{1 \le i \le 3 \\ 1 \le j \le 4}} \qquad B = (\min(i, j))_{\substack{1 \le i \le 5 \\ 1 \le j \le 4}}$$

Exercice 2 (♣)

On considère la matrice : $X = \begin{pmatrix} 1 & 0 & -1 \\ -1 & 2 & 3 \\ 1 & 1 & 1 \end{pmatrix}$

Déterminer les matrices :

$$X - 2I_3$$
 $-(X - 2I_3)$

$$I_3 - 2X$$
 $4(I_3 - X)$

Exercice 3 (♣)

On considère les matrices :

$$A = \begin{pmatrix} 4 & 8 \\ 1 & 2 \end{pmatrix} \qquad \text{et} \qquad B = \begin{pmatrix} 3 & 9 \\ 1 & 1 \end{pmatrix}$$

Calculer et comparer $A^2 + 2AB + B^2$ et $(A + B)^2$.

Exercice 4 (♣)

Effectuer les produits suivants lorsque c'est possible, et dans ce cas donner la dimension de la matrice produit. Lorsque c'est impossible, le justifier.

1.
$$\begin{pmatrix} 2 & 5 \\ 3 & 6 \\ 4 & 7 \end{pmatrix} \times \begin{pmatrix} 2 & 5 \\ 4 & 6 \end{pmatrix}$$

2.
$$(-1 \quad 4 \quad 5) \times \begin{pmatrix} 0 & -1 & 6 \\ 2 & 4 & -2 \\ 3 & 5 & 3 \end{pmatrix}$$

3.
$$\begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 5 \end{pmatrix} \times \begin{pmatrix} 2 & 5 \\ 3 & 6 \\ 4 & 1 \end{pmatrix}$$

4.
$$\begin{pmatrix} 2 & 5 & 0 \\ 3 & 6 & 3 \\ 4 & 1 & 2 \end{pmatrix} \times \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 5 \end{pmatrix}$$

5.
$$\begin{pmatrix} 1 & 0 & 5 \\ 2 & -1 & 6 \\ 3 & 4 & 7 \end{pmatrix} \times \begin{pmatrix} 2 & 7 & 8 \\ 0 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$

Exercice 5 (♣)

On considère les deux matrices suivantes :

$$A = \begin{pmatrix} -1 & 4 & 5 \\ 4 & 1 & 3 \\ 5 & 3 & 2 \end{pmatrix} \quad B = \begin{pmatrix} 1 & 0 & 0 \\ -3 & 2 & 0 \\ -1 & 2 & 3 \end{pmatrix}$$

Calculer le terme situé à l'intersection de la deuxième colonne et de la troisième ligne dans les matrices A^2-B^2 , (A-B)(A+B) et (A+B)(A-B).

Que peut-on en déduire?

Exercice 6 (♣)

Soit A la matrice :

$$A = \begin{pmatrix} 3 & 7 & 5 \\ 1 & -1 & 4 \\ 2 & 1 & 8 \end{pmatrix}$$

Soient E_1 , E_2 et E_3 les matrices définies par :

$$E_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \qquad E_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \qquad E_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

- 1. Calculer AE_1 , AE_2 et AE_3 .
- 2. Calculer tE_1A , tE_2A et tE_3A .

Exercice 7 (♣)

On considère la matrice :

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 3 & -2 & 1 \end{pmatrix}$$

Calculer A^tA puis tAA .

Exercice 8 (♣)

- 1. Soit A une matrice symétrique. Montrer que pour tout k dans \mathbb{N} , la matrice A^k est une matrice symétrique.
- 2. Montrer que pour toute matrice A de $\mathcal{M}_n(\mathbb{R})$, la matrice $B = A + {}^t A$ est une matrice symétrique.

Exercice 9 (♥) —

Soient A et X deux matrices de $\mathcal{M}_n(\mathbb{R})$.

- 1. Montrer que la matrice tAA est symétrique.
- 2. Montrer que si X est symétrique, ${}^tAX + XA$ est symétrique.
- 3. Montrer que si X est antisymétrique, ${}^tAX + XA$ est antisymétrique.

Exercice 10 (4) -

Les matrices suivantes sont-elles inversibles? Si oui, calculer leur inverse.

1.
$$A = \begin{pmatrix} -2 & 3 & 1 \\ 3 & 6 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

2.
$$B = \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}$$

3.
$$C = \begin{pmatrix} 1 & -3 & -1 \\ -2 & 7 & 2 \\ 3 & 2 & 3 \end{pmatrix}$$

4.
$$D = \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}$$

5.
$$E = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -3 & 0 \\ 0 & 0 & \frac{1}{6} \end{pmatrix}$$

6.
$$F = \begin{pmatrix} -1 & 1 & 1 \\ 0 & -2 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

7.
$$G = \begin{pmatrix} 2 & -2 & 1 \\ 2 & -3 & 2 \\ -1 & 2 & 0 \end{pmatrix}$$

8.
$$H = \begin{pmatrix} 4 & 0 \\ 0 & -5 \end{pmatrix}$$

Exercice 11 (♥)

On note $I = I_3$ et on donne : $A = \begin{pmatrix} 1 & 1 & -2 \\ -1 & -1 & 2 \\ -2 & -2 & 0 \end{pmatrix}$

- 1. (a) Calculer A^2 , puis A^3 .
 - (b) En déduire que A n'est pas inversible.
- 2. (a) Calculer $(I A)(I + A + A^2)$.
 - (b) En déduire que I-A est inversible et donner son inverse.
- 3. Montrer également que I+A est inversible et donner son inverse.

Exercice 12 (♥)

On considère les matrices :

$$A = \begin{pmatrix} 1 & -3 & 2 \\ -1 & 2 & 0 \\ -5 & 9 & -3 \end{pmatrix} \quad \text{et} \quad B = \begin{pmatrix} 1 & 1 & 0 \\ -1 & -2 & 1 \\ -1 & -2 & 1 \end{pmatrix}$$

- 1. Calculer A^3 . En déduire que A est inversible et donner son inverse
- 2. Calculer B^3 . La matrice B est-elle inversible?

Exercice 13 (♥)

- 1. On considère la matrice $A=\begin{pmatrix}2&-1&2\\5&-3&3\\-1&0&-2\end{pmatrix}$.
 - (a) Calculer $-A^3 3A^2 3A$.
 - (b) La matrice A est-elle inversible? Si oui, expliciter son inverse.
- 2. On considère la matrice $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & 1 \\ 1 & -2 & 0 \end{pmatrix}$.
 - (a) Calculer $A^3 A$.
 - (b) La matrice A est-elle inversible? Si oui, expliciter son inverse.

Exercice 14 (♥♦)

Soient α,β et γ trois réels. On pose $C=\left(\begin{array}{ccc} 0 & 0 & \alpha \\ 1 & 0 & \beta \\ 0 & 1 & \gamma \end{array}\right)$.

- 1. Montrer que $C^3 \gamma C^2 \beta C \alpha I_3 = 0_3$.
- 2. En déduire que, si $\alpha \neq 0$, alors C est inversible. Donner son inverse
- 3. Montrer que si $\alpha=0$ alors C n'est pas inversible.

Exercice 15 (♣)

On considère la matrice :

$$A = \begin{pmatrix} 2 & 2 & 3 \\ 1 & -1 & 0 \\ -1 & 2 & 1 \end{pmatrix}$$

Montrer que la matrice A est inversible et calculer son inverse.

Exercice 16 (♥)

- 1. Montrer que la matrice $A=\begin{pmatrix} -3 & 1 & 2\\ 1 & -1 & 2\\ -3 & 4 & -8 \end{pmatrix}$ est inversible et déterminer son inverse.
- 2. Résoudre les systèmes (S_1) et (S_2) suivants :

$$(S_1): \begin{cases} -3x + y + 2z = 4\\ x - y + 2z = -2\\ -3x + 4y - 8z = 4 \end{cases}$$

$$(S_2): \begin{cases} -3x + y + 2z = 1\\ x - y + 2z = 0\\ -3x + 4y - 8z = 3 \end{cases}$$

Exercice 17 ()

Déterminer les valeurs de $m\in\mathbb{R}$ pour lesquelles la matrice A_m est inversible et calculer A_m^{-1} pour ces valeurs, où A_m est donnée par

$$A_m = \left(\begin{array}{ccc} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 2 & 1 & m \end{array}\right)$$

Exercice 18 ()

Lemme d'Hadamard

Soit n un entier supérieur ou égal à 2 et A une matrice carré d'ordre n à coefficients réels telle que pour tout $i \in [\![1,n]\!]$, on ait : $|a_{i,i}| > \sum |a_{i,j}|$.

On dit que $\overset{\circ}{A}$ est une matrice à diagonale strictement dominante.

Montrer que la matrice A est inversible.

Indication : on pourra raisonner par l'absurde en considérant une matrice colonne X non nulle telle que AX=0.

Exercice 19 (♠♠) -

Soit la matrice $B=(\min(i,j))_{1\leq i,j\leq n}$ i.e. la matrice :

$$B = \begin{pmatrix} 1 & 1 & 1 & \dots & 1 & 1 \\ 1 & 2 & 2 & \dots & 2 & 2 \\ 1 & 2 & 3 & \dots & 3 & 3 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & 2 & 3 & \dots & n-1 & n-1 \\ 1 & 2 & 3 & \dots & n-1 & n \end{pmatrix}$$

- 1. Trouver une matrice $M \in \mathcal{M}_n(\mathbb{R})$ telle que $B = {}^t MM$.
- 2. En déduire que B est inversible et calculer B^{-1} .

Exercice 20 (♥)

Dans chacun des cas suivants, calculer A^2 , A^3 , A^4 puis A^n pour $n \in \mathbb{N}^*$.

1.
$$A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

$$2. \ A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

3.
$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$4. C = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}$$

Exercice 21 (♥)

On considère la matrice :

$$J = \begin{pmatrix} 2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2 \end{pmatrix}$$

Montrer que :

$$\forall n \in \mathbb{N}^* \qquad J^n = 6^{n-1}J$$

Exercice 22 (♥♠)

On considère la matrice :

$$A = \begin{pmatrix} 1 & -3 & 6 \\ 6 & -8 & 12 \\ 3 & -3 & 4 \end{pmatrix}$$

- 1. Calculer A^2 et déterminer deux réels λ et μ tels que $A^2 = \lambda A + \mu I_3$.
- 2. Montrer par récurrence sur n que pour tout n dans \mathbb{N} , il existe un réel a_n tel que :

$$A^n = \left(\frac{1}{3} - a_n\right)A + \left(\frac{2}{3} + a_n\right)I_3$$

- 3. Vérifier que la suite $(a_n)_{n\in\mathbb{N}}$ est géométrique.
- 4. En déduire les expressions de a_n puis de A^n en fonction de n.

Exercice 23 (♥)

On considère les matrices :

$$A = \begin{pmatrix} 6 & 4 & 0 \\ -4 & -2 & 0 \\ 0 & 0 & 2 \end{pmatrix} \quad \text{et} \quad B = A - 2I_3$$

- 1. Calculer B et B^2 .
- 2. Montrer que :

$$\forall n \in \mathbb{N}$$
 $A^n = 2^n I_3 + n 2^{n-1} B$

Exercice 24 ()

On considère la matrice :

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 6 & -5 & 6 \\ 3 & -3 & 4 \end{pmatrix}$$

1. Montrer par récurrence sur n que pour tout n dans \mathbb{N} , il existe un réel a_n tel que :

$$A^{n} = \begin{pmatrix} 1 & 0 & 0 \\ 2a_{n} & 1 - 2a_{n} & 2a_{n} \\ a_{n} & -a_{n} & a_{n} + 1 \end{pmatrix}$$

- 2. Montrer que la suite (a_n) est arithmético géométrique.
- 3. En déduire les expressions de a_n puis de A^n en fonction de n.

Exercice 25 (♥)

On considère les matrices :

$$A = \begin{pmatrix} 5 & 1 & 2 \\ -1 & 7 & 2 \\ 1 & 1 & 6 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ -1 & 1 & 1 \end{pmatrix}$$

- 1. Justifier que P est inversible et calculer son inverse.
- 2. Déterminer la matrice D telle que $A = PDP^{-1}$.
- 3. Montrer que $\forall n \in \mathbb{N}$ $A^n = PD^nP^{-1}$ et expliciter A^n .

Exercice 26 (♥) —

Soit (u_n) la suite définie par $u_0=2$, $u_1=1$, $u_2=-1$ et :

$$\forall n \in \mathbb{N} \qquad u_{n+3} = 2u_{n+2} + u_{n+1} - 2u_n$$

On considère les matrices :

$$A = \begin{pmatrix} 2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{et} \quad P = \begin{pmatrix} 1 & 1 & 4 \\ 1 & -1 & 2 \\ 1 & 1 & 1 \end{pmatrix}$$

- 1. Montrer que P est inversible et calculer son inverse.
- 2. On pose $D = P^{-1}AP$. Calculer D. En déduire D^n .
- 3. Montrer que : $\forall n \in \mathbb{N}$ $D^n = P^{-1}A^nP$. En déduire les neuf coefficients de la matrice A^n .
- 4. Pour tout n dans \mathbb{N} , on pose $X_n = \begin{pmatrix} u_{n+2} \\ u_{n+1} \\ u_n \end{pmatrix}$.
 - (a) Vérifier que $X_{n+1} = AX_n$.
 - (b) En déduire X_n en fonction de A^n et de X_0 .
 - (c) Déterminer l'expression de u_n en fonction de n.
- A Du trèfle à brouter...
- ▼ À connaître par coeur.
- Qui s'y frotte s'y pique!
- Calculatoire, risque de rester sur le carreau!