Correction partielle du TD 13

Table des matières

1	Exercice 9	2
2	Exercice 10	2
3	Exercice 11	4
4	Exercice 13	4
5	Exercice 17	5
6	Exercice 18	Ę
7	Exercice 20	7

(c) M. Fontaine

1 Exercice 9

1. La fonction f est dérivable sur \mathbb{R}_+^* comme produit de fonctions de référence dérivables sur \mathbb{R} . On a pour tout $x \in \mathbb{R}_+^*$,

$$f'(x) = 1 \times \ln(x) + x \times \frac{1}{x} = \ln(x) + 1.$$

Pour x > 0, on a les équivalences suivantes :

$$f'(x) > 0 \iff \ln(x) > -1 \iff x > e^{-1}$$

Ainsi la fonction f est décroissante sur $]0, e^{-1}[$ et croissante sur $[e^{-1}, +\infty[$.

2. La fonction f est continue sur $[e^{-1}, +\infty[$ (car dérivable) et strictement croissante donc d'après le théorème de la bijection, elle réalise une bijection de $[e^{-1}, +\infty[$ sur $f([e^{-1}, +\infty[)$. Or on a :

$$f(e^{-1}) = e^{-1} \times (-1) = -e^{-1}$$
 et $\lim_{x \to +\infty} f(x) = +\infty$.

Ainsi f réalise une bijection de $[e^{-1}, +\infty[$ sur $[-e^{-1}, +\infty[$.

- 3. On a $f'(x) = 0 \iff x = e^{-1}$ ainsi f^{-1} est dérivable sur $]e^{-1}, +\infty[$.
- 4. D'après les formules de cours, on a :

$$(f^{-1})'(0) = \frac{1}{f'(f^{-1}(0))}$$

or f(1) = 0 et f est bijective sur $[e^{-1}, +\infty[$ donc $f^{-1}(0) = 1$. Ainsi on a :

$$(f^{-1})'(0) = \frac{1}{f'(1)} = \frac{1}{\ln(1) + 1} = 1$$

On a $f(e) = e \text{ donc } f^{-1}(e) = e \text{ et donc } :$

$$(f^{-1})'(e) = \frac{1}{f'(f^{-1}(e))} = \frac{1}{f'(e)} = \frac{1}{\ln(e) + 1} = \frac{1}{2}$$

On a $f(e^2) = 2e^2$ donc $f^{-1}(2e^2) = e^2$ et donc :

$$(f^{-1})'(2e^2) = \frac{1}{f'(f^{-1}(2e^2))} = \frac{1}{f'(e^2)} = \frac{1}{\ln(e^2) + 1} = \frac{1}{3}$$

2 Exercice 10

1. Les fonctions $x\mapsto x$ et $x\mapsto 1+x$ sont continues sur $]-1,+\infty[$ et $x\mapsto 1+x$ est à valeurs dans \mathbb{R}_+^* . La fonction \ln est continue sur \mathbb{R}_+^* donc par composée puis somme, $x\mapsto x-\ln(1+x)$ est continue sur $]-1,+\infty[$. Ainsi par quotient $x\mapsto \frac{x-\ln(1+x)}{x}$ est continue sur $]-1,+\infty[\setminus\{0\}.$ Il reste donc à montrer que f est continue en 0. On pour $x\neq 0$,

$$f(x) = \frac{x - \ln(1+x)}{x} = 1 - \frac{\ln(1+x)}{x}.$$

Or on peut montrer en utilisant un taux d'accroissement que $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$ (cf Exemple 13.5 du Chapitre 13). Ainsi

$$\lim_{x \to 0} f(x) = 1 - 1 = 0 = f(0).$$

La fonction f est donc continue en 0 et on peut en conclure qu'elle est continue sur $]-1,+\infty[$.

2. Les fonctions $x\mapsto x$ et $x\mapsto 1+x$ sont de classe \mathcal{C}^1 sur $]-1,+\infty[$ et $x\mapsto 1+x$ est à valeurs dans \mathbb{R}_+^* . La fonction \ln est de classe \mathcal{C}^1 sur \mathbb{R}_+^* donc par composée puis somme, $x\mapsto x-\ln(1+x)$ est de classe \mathcal{C}^1 sur $]-1,+\infty[$. Ainsi par quotient f est de classe \mathcal{C}^1 sur $]-1,+\infty[\setminus\{0\},$

$$f'(x) = \frac{\left(1 - \frac{1}{1+x}\right) \times x - \left(x - \ln(1+x)\right) \times 1}{x^2} = \frac{\frac{x^2}{x+1} - x + \ln(1+x)}{x^2} = \frac{1}{x+1} + \frac{\ln(1+x) - x}{x^2}$$

3. On va appliquer le théorème de prolongement de la dérivée. En admettant la limite donnée par l'énoncé, on a :

$$\lim_{x \to 0} f'(x) = 1 - \frac{1}{2} = \frac{1}{2}$$

De plus, f est de classe \mathcal{C}^1 sur $]-1,+\infty[\setminus\{0\}]$ et continue en 0 donc on peut conclure que f est \mathcal{C}^1 sur $]-1,+\infty[$ et que $f'(0)=\frac{1}{2}$.

4. La tangente à la courbe de f au point d'abscisse 0 a pour équation :

$$y = f'(0)(x - 0) + f(0) = \frac{1}{2}x.$$

5. La fonction g est dérivable sur $]-1,+\infty[$ pour les mêmes raisons que f. On a pour $x\in]-1,+\infty[$,

$$g'(x) = 1 \times \ln(1+x) + \frac{1+x}{1+x} - 1 = \ln(1+x)$$

Or on a les équivalences suivantes pour $x \in]-1, +\infty[$:

$$g'(x) > 0 \iff \ln(1+x) > 0 \iff 1+x > e^0 \iff x > 0$$

La fonction g est décroissante sur]-1,0[et croissante sur $]0,+\infty[$. De plus g(0)=0 donc g atteint son minimum en 0 et il vaut 0.

Remarquons que pour $x \in]-1, +\infty[\setminus \{0\},$

$$f'(x) = \frac{(x+1)\ln(x+1) - x}{x^2(x+1)} = \frac{g(x)}{x^2(x+1)}$$

Ainsi $f'(x)=0 \iff g(x)=0$. Or on vient de montrer que g s'annulait une unique fois en 0 sur $]-1,+\infty[$. Donc pour tout $x\in]-1,+\infty[\setminus\{0\},\ f'(x)\neq 0.$ De plus, $f'(0)=\frac{1}{2}\neq 0.$ Ainsi a fonction f ne possède pas de tangente horizontale.

6. Dressons le tableau de variations de f. Comme g est décroissante sur]-1,0[et croissante sur $]0,+\infty[$ et qu'elle s'annule en 0, on en déduit que pour tout $x\in]-1,+\infty[$, $g(x)\geqslant 0$. Ainsi $\forall x\in]-1,+\infty[$, $f'(x)\geqslant 0$.

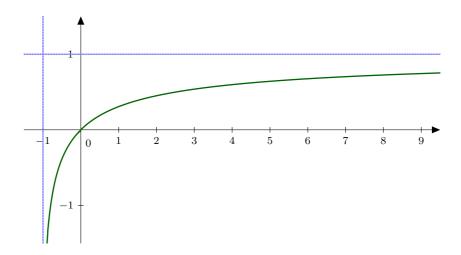
x	_	1 +∞
f'(x)		+
f		

7. On a : $\lim_{x \to -1} \ln(1+x) = -\infty$ donc $\lim_{x \to -1} f(x) = -\infty$, la courbe de f admet donc une asymptote verticale en -1. Au voisinage de $+\infty$, on a :

$$f'(x) = 1 - \frac{\ln(1+x)}{x} = 1 - \frac{\ln(x) + \ln(1+\frac{1}{x})}{x} = 1 - \frac{\ln(x)}{x} - \frac{\ln(1+\frac{1}{x})}{x}$$

Or $\lim_{x\to +\infty}\frac{\ln(x)}{x}=0$ par croissance comparée, on obtient donc que $\lim_{x\to +\infty}f(x)=1$. Ainsi la courbe de f possède une asymptote horizontale d'équation y=1 au voisinage de $+\infty$.

8. On a :



3 Exercice 11

- $\begin{array}{l} \text{1. On a}: \lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2} \text{ et } \lim_{x \to +\infty} \frac{1}{x} = 0 \text{ donc par composée } \lim_{x \to +\infty} f(x) = \frac{\pi}{2} + 0 = \frac{\pi}{2}. \\ \text{On a}: \lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2} \text{ et } \lim_{x \to -\infty} \frac{1}{x} = 0 \text{ donc par composée } \lim_{x \to -\infty} f(x) = -\frac{\pi}{2} + 0 = -\frac{\pi}{2}. \\ \end{array}$
- 2. Pour tout $x \in \mathbb{R}^*$, posons $f(x) = \arctan(x) + \arctan\left(\frac{1}{x}\right)$. La fonction f est définie et dérivable sur \mathbb{R}^* . En effet, $x \mapsto \frac{1}{x}$ est dérivable sur \mathbb{R}^* et $x \arctan(x)$ est dérivable sur \mathbb{R} donc par composée puis somme, f est dérivable sur \mathbb{R}^* . On a pour tout réel x non nul, on a :

$$f'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} \times \frac{1}{1+\left(\frac{1}{x}\right)^2}$$
$$= \frac{1}{1+x^2} - \frac{1}{x^2+1}$$

La fonction f est donc constante sur $]0, +\infty[$ et sur $]-\infty, 0[$.

3. La fonction f est donc constante sur $]0,+\infty[$ et sur $]-\infty,0[$. qui sont tous les deux des intervalles. Il existe donc $(C_1,C_2)\in\mathbb{R}^2$ tel que :

$$\forall x \in]-\infty, 0[, f(x) = C_1 \quad \text{et} \quad \forall x \in]0, +\infty, f(x) = C_2.$$

$$\operatorname{Or} \lim_{x \to -\infty} f(x) = -\frac{\pi}{2} \operatorname{donc} C_1 = -\frac{\pi}{2} \operatorname{et} \lim_{x \to -\infty} f(x) = \frac{\pi}{2} \operatorname{donc} C_2 = \frac{\pi}{2}.$$

4 Exercice 13

1. Soit $x \in]-1, +\infty[$ fixé, on définit pour $t \in]-1, +\infty[$ la fonction f par $f(t) = \ln(1+t)$. La fonction $t \mapsto 1+t$ est continue, dérivable sur $]-1, +\infty[$ et à valeurs dans RR_+^* , la fonction $t \mapsto \ln(t)$ est continue et dérivable sur \mathbb{R}_+^* donc par composée la fonction f est continue, dérivable sur $]-1, +\infty[$. Soit $t \in]-1, +\infty[$,

$$f'(t) = \frac{1}{1+t}.$$

On doit dès à présent distinguer deux cas :

- (a) x > 0
- (b) $x \in]-1,0[$

Commençons par le cas x > 0. On travaille alors sur le segment [0, x].

Soit $t \in [0,x]$ alors $1 \leqslant 1+t \leqslant 1+x$, par décroissance de la fonction inverse sur \mathbb{R}_+^* , on obtient :

$$\frac{1}{1+x} \leqslant f'(t) \leqslant 1.$$

Ainsi d'après l'inégalité des accroissements finis appliquée sur [0, x], on obtient :

$$\frac{1}{1+x}(x-0) \leqslant f(x) - f(0) \leqslant 1 \times (x-0)$$

i.e.

$$\frac{x}{1+x} \leqslant \ln(1+x) \leqslant x.$$

Traitons maintenant le cas où $x \in]-1,0[$. On travaille alors sur le segment [x,0]. Soit $t \in [x,0]$ alors $1+x \leqslant 1+t \leqslant 1$, par décroissance de la fonction inverse sur \mathbb{R}_{-}^{*} , on obtient :

$$1 \leqslant f'(t) \leqslant \frac{1}{1+x}.$$

Ainsi d'après l'inégalité des accroissements finis appliquée sur [x,0], on obtient :

$$1(0-x) \le f(0) - f(x) \le \frac{1}{1+x} \times (0-x)$$

i.e.

$$-x \leqslant -\ln(1+x) \leqslant -\frac{x}{1+x}$$

ce qui équivaut à :

$$\frac{x}{1+x} \leqslant \ln(1+x) \leqslant x.$$

Pour conclure, il reste à vérifier que l'inégalité est également vraie pour x=0.

2. Soit $x \in]0, +\infty[$ fixé, on définit pour $t \in]0, +\infty[$ la fonction f par $f(t) = \arctan(t)$. La fonction f est continue, dérivable sur $]0, +\infty[$. Soit $t \in]0, +\infty[$,

$$f'(t) = \frac{1}{1+t^2}.$$

Soit $t \in [0, x]$ alors par croissance de la fonction carré sur \mathbb{R}_+ , $1 \le 1 + t^2 \le 1 + x^2$, par décroissance de la fonction inverse sur \mathbb{R}_+^* , on obtient :

$$\frac{1}{1+x^2} \leqslant f'(t) \leqslant 1.$$

Ainsi d'après l'inégalité des accroissements finis appliquée sur [0,x], on obtient :

$$\frac{1}{1+x^2}(x-0) \leqslant f(x) - f(0) \leqslant 1 \times (x-0)$$

i.e.

$$\frac{x}{1+x^2} \leqslant \arctan(x) \leqslant x.$$

3. Posons pour $x \in \mathbb{R}_+$, la fonction $f(x) = e^x - 1 - x - \frac{x^2}{2}$. Montrons qu'elle est toujours positive. Elle est dérivable sur \mathbb{R}_+ et on a :

$$f'(x) = e^x - 1 - x.$$

Etudions le signe de sa dérivée. Pour cela, on va utiliser l'inégalité des accroissements finis. En effet, fixons $x \in \mathbb{R}_+$ et posons pour $t \in \mathbb{R}_+$, la fonction g définie par $g(t) = e^t$. On a :

$$q'(t) = e^t$$
.

Soit $t \in [0, x]$, on a par croissance de la fonction \exp , $1 \le g'(x) \le e^x$ donc d'après l'inégalité des accroissements finis :

$$1 \times (x - 0) \le g(x) - g(0) \le e^x(x - 0).$$

Gardons seulement l'inégalité de gauche et on obtient :

$$x \leq e^x - 1$$

i.e pour tout $x \in \mathbb{R}_+$, $e^x - x - 1 \ge 0$. Ainsi pour tout $x \in \mathbb{R}_+$, $f'(x) \ge 0$. On en déduit que la fonction f est croissante sur \mathbb{R}_+ . De plus, f(0) = 0 ainsi f est bien toujours positive sur \mathbb{R}_+ et on a le résultat voulu.

5 Exercice 17

Soit f une fonction polynôme de degré n. Notons $x_1 < x_2 < \ldots < x_n$ ses n racines distinctes.

La fonction f est continue et dérivable sur \mathbb{R} , on a $f(x_1)=f(x_2)$ donc d'après le théorème de Rolle, il existe $y_1\in]x_1,x_2[$ tel que $f'(y_1)=0$.

On applique alors de nouveau le théorème de Rolle sur $[x_2, x_3]$ puis sur $[x_3, x_4]$ etc. Rédigeons cela proprement :

Pour tout $i \in [1, n-1]$, f est continue sur $[x_i, x_{i+1}]$ et dérivable sur $]x_i, x_{i+1}[$ et on a :

$$f(x_i) = f(x_{i+1})$$

donc d'après le théorème de Rolle, il existe $y_i \in]x_i, x_{i+1}[$ tel que $f'(y_i) = 0$.

On a donc bien montré que f' admettait n-1 racines. Elles sont bien distinctes car les racines appartiennent toutes à des intervalles disjonts.

6 Exercice 18

1. Soit un entier $k \ge 2$, la fonction f est dérivable sur \mathbb{R}^* donc en particulier elle est dérivable sur [k-1,k], on a pour tout $x \in [k-1,k]$,

$$f'(x) = \frac{1}{x^2}.$$

Ainsi pour $x \in [k-1,k]$, par croissance de la fonction carré sur \mathbb{R}_+ , on a :

$$(k-1)^2 \leqslant x^2 \leqslant k^2$$

puis par décroissance de la fonction inverse sur \mathbb{R}_+^* , on a :

$$\frac{1}{k^2} \leqslant f(x) \leqslant \frac{1}{(k-1)^2}$$

f étant continue et dérivable sur [k-1,k] et sa dérivée étant bornée sur cet intervalle, on a, d'après l'inégalité des accroissements finis :

$$\frac{1}{k^2}(k-(k-1)) \leqslant f(k) - f(k-1) \leqslant \frac{1}{(k-1)^2}(k-(k-1))$$

i.e.

$$\frac{1}{k^2} \leqslant f(k) - f(k-1) \leqslant \frac{1}{(k-1)^2}.$$

2. Sommons l'inégalité de gauche pour k variant de 2 à n, on obtient :

$$\sum_{k=2}^{n} \frac{1}{k^2} \leqslant \sum_{k=2}^{n} (f(k) - f(k-1)).$$

Or on a:

$$\begin{split} \sum_{k=2}^n (f(k)-f(k-1)) &= \sum_{k=2}^n f(k) - \sum_{k=2}^n f(k-1) \quad \text{ par linéarit\'e de la somme} \\ &= \sum_{k=2}^n f(k) - \sum_{j=1}^{n-1} f(j) \quad \text{en posant dans la 2\'eme somme } j=k-1 \\ &= f(n) - \sum_{k=2}^{n-1} f(k) - \sum_{j=2}^{n-1} f(j) - f(1) \\ &= f(n) - f(1). \end{split}$$

Ainsi pour tout entier $n \geqslant 2$:

$$\sum_{k=2}^{n} \frac{1}{k^2} \leqslant f(n) - f(1).$$

3. Soit $n \in \mathbb{N}^*$, on a :

$$S_{n+1} - S_n = \sum_{k=1}^{n+1} \frac{1}{k^2} - \sum_{k=1}^{n} \frac{1}{k^2} = \frac{1}{(n+1)^2} > 0.$$

La suite $(S_n)_{n\in\mathbb{N}^*}$ est donc strictement croissante.

4. D'après la question précédente pour $n \geqslant 2$, on a :

$$\sum_{k=2}^{n} \frac{1}{k^2} \leqslant f(n) - f(1)$$

i.e.

$$\sum_{k=2}^{n} \frac{1}{k^2} \leqslant 1 - \frac{1}{n}$$

i.e.

$$S_n = 1 + \sum_{k=2}^{n} \frac{1}{k^2} \leqslant 2 - \frac{1}{n}.$$

Or pour tout entier $n \in \mathbb{N}^*$, $2 - \frac{1}{n} \leqslant 2$, ainsi $S_n \leqslant 2$. La suite $(S_n)_{n \in \mathbb{N}^*}$ est majorée par 2.

5. La suite $(S_n)_{n\in\mathbb{N}^*}$ est croissante et majorée par 2 donc d'après le théorème de convergence monotone, on peut affirmer qu'elle converge.

7 Exercice 20

1. La fonction $x\mapsto 1+x$ est dérivable sur $]-1,+\infty[$ et à valeurs dans \mathbb{R}_+^* . La fonction \ln est continue sur \mathbb{R}_+^* donc par composée et produit, f est dérivable sur $]-1,+\infty[$. On a pour $x\in]-1,+\infty[$,

$$f'(x) = \frac{3}{2(x+1).}$$

Ainsi $\forall x \in]-1, +\infty[$, f'(x) > 0. La fonction f est donc strictement croissante sur $]-1, +\infty[$.

2. Posons la fonction g définie sur $]-1,+\infty[$ par g(x)=f(x)-x. La fonction g est dérivable sur $]-1,+\infty[$ comme somme de fonctions dérivables. On a pour tout $x\in]-1,+\infty[$,

$$g'(x) = f'(x) - 1 = \frac{3 - 2(x+1)}{2(x+1)} = \frac{1 - 2x}{2(x+1)}$$

Pour $x \in [1, 2]$, g'(x) < 0 donc g est strictement décroissante sur [1, 2]. On a :

$$g(1) = \frac{3}{2}\ln(2) - 1 = \ln(\sqrt{8}) - \ln(e)$$

or $7 < e^2 < 8$ donc par croissance de la fonction racine, on a : $\sqrt{7} < e < \sqrt{8}$ ainsi par croissance de la fonction $\ln, g(1) > 0$. On a également :

$$g(2) = \frac{3}{2}\ln(3) - 2 = \ln(\sqrt{27}) - \ln(e^2)$$

Or $\sqrt{27} \in [5,6]$ donc $\sqrt{27} < 7 < e^2$ ainsi par croissance de la fonction $\ln, g(2) < 0$.

Comme de plus la fonction g est continue sur [1,2], on en déduit, avec le théorème des valeurs intermédiaires, que g s'annule une unique fois sur [1,2]. Notons ce point α . L'équation f(x)=x admet donc pour unique solution α sur [1,2].

3. Montrons ce résultat par récurrence. Posons pour $n \in \mathbb{N}$, $\mathcal{P}(n)$: « $u_n \geqslant \alpha$ ».

Initialisation (n=0) On a $u_0=3$ et $\alpha\in[1,2]$ donc $u_0\geqslant\alpha$ et $\mathcal{P}(0)$ est vraie.

Hérédité Soit $n \in \mathbb{N}$, on suppose $\mathcal{P}(n)$ vraie, montrons que $\mathcal{P}(n+1)$ est vraie.

Par hypothèse de récurrence, $u_n \geqslant \alpha$ or d'après la question 1., la fonction f est croissante sur $]-1,+\infty[$ donc $f(u_n) \geqslant f(\alpha)$. Or par définition de α , $f(\alpha) = \alpha$ donc $u_{n+1} \geqslant \alpha$. Ainsi $\mathcal{P}(n+1)$ est vraie.

Conclusion Pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

4. Soit $x \in [1, +\infty[$ alors $x+1 \geqslant 2$ et donc par décroissance de la fonction inverse sur \mathbb{R}_+^* , $\frac{1}{x+1} \geqslant \frac{1}{2}$. Ainsi comme $\frac{3}{2} > 0$, on en déduit que $f'(x) \geqslant \frac{3}{4}$. De plus, pour $x \in [1, +\infty[$, on a clairement $f'(x) \geqslant 0$. On obtient donc l'encadrement voulu.

5. La fonction f est continue et dérivable sur $[1, +\infty[$, pour tout $x \in [1, +\infty[$, $0 \le f'(x) \le \frac{3}{4}$. De plus, $\alpha \in [1, +\infty[$ et on a montré à la question 3. que pour tout $n \in \mathbb{N}$, $u_n \ge \alpha \ge 1$ donc pour tout $n \in \mathbb{N}$, $u_n \in [1, +\infty[$. Ainsi d'après l'inégalité des accroissements finis, on obtient :

 $|f(u_n) - f(\alpha)| \leqslant \frac{3}{4}|u_n - \alpha|$

Or $u_n \geqslant \alpha$ et f est croissante donc on a :

$$0 \leqslant f(u_n) - f(\alpha) \leqslant \frac{3}{4}(u_n - \alpha)$$

et donc par définition de α et de la suite $(u_n)_{n\in\mathbb{N}}$:

$$0 \leqslant u_{n+1} - \alpha \leqslant \frac{3}{4}(u_n - \alpha).$$

6. Montrons ce résultat par récurrence. Posons pour $n \in \mathbb{N}$, $\mathcal{P}(n)$: « $0 \leqslant u_n - \alpha \leqslant \left(\frac{3}{4}\right)^n (u_0 - \alpha)$ ».

Initialisation (n=0) On a : $\left(\frac{3}{4}\right)^0(u_0-\alpha)=u_0-\alpha\geqslant 0$ donc $\mathcal{P}(0)$ est vraie.

Hérédité Soit $n \in \mathbb{N}$, on suppose $\mathcal{P}(n)$ vraie, montrons que $\mathcal{P}(n+1)$ est vraie.

On a:

$$0\leqslant u_{n+1}-\alpha\leqslant\frac{3}{4}(u_n-\alpha) \qquad \text{d'après la question 5}.$$

$$\leqslant\frac{3}{4}\times\left(\frac{3}{4}\right)^n(u_0-\alpha) \qquad \text{d'après l'hypothèse de récurrence}$$

$$\leqslant\left(\frac{3}{4}\right)^{n+1}(u_0-\alpha)$$

Ainsi $\mathcal{P}(n+1)$ est vraie.

Conclusion Pour tout $n \in \mathbb{N}$, $\mathcal{P}(n)$ est vraie.

7. Comme $\frac{3}{4} \in]-1,1[$, $\lim_{n \to +\infty} \left(\frac{3}{4}\right)^n = 0$ et donc $\lim_{n \to +\infty} \left(\frac{3}{4}\right)^n (u_0 - \alpha) = 0$ ainsi d'après le théorème d'encadrement, la suite $(u_n)_{n \in \mathbb{N}}$ converge et $\lim_{n \to +\infty} u_n = \alpha$.