28. Extrema et convexité

Quel que soit le temps passé à faire des mathématiques, ce n'est jamais du temps perdu.

Cédric Villani

Dans ce chapitre, nous allons revenir sur la notion d'extrema en la reliant aux dérivées premières et secondes d'une fonction lorsque celles-ci existent. Nous parlerons également de convexité, une autre notion étroitement liée à la dérivées seconde d'une fonction. Nous verrons également une condition suffisante de minimum global pour les fonctions convexes.

28.1 Recherche d'extrema

28.1.1 Quelques rappels

Définition 28.1 (Extremum local) Soit f une fonction à valeurs réelles définie sur un ensemble E et $x_0 \in E$.

- On dit que f admet un maximum local en x_0 lorsqu'il existe un voisinage V_{x_0} de x_0 inclus dans E tel que : pour tout $x \in V_{x_0}$, $f(x) \leq f(x_0)$.
- On dit que f admet un minimum local en x_0 lorsqu'il existe un voisinage V_{x_0} de x_0, V_{x_0} inclus dans E, tel que : pour tout $x \in V_{x_0}, f(x) \ge f(x_0)$.

Définition 28.2 (Extremum global) Soit f une fonction à valeurs réelles définie sur un ensemble E et $x_0 \in E$.

• On dit que f admet un maximum global en x_0 lorsque pour tout $x \in E$,

$$f(x) \leqslant f(x_0)$$
.

• On dit que f admet un minimum global en x_0 lorsque pour tout $x \in E$,

$$f(x) \geqslant f(x_0)$$
.

Illustration

28.1.2 Recherche d'extrema sur un segment

Théorème 28.1 (Théorème des bornes, rappel) Soit a et b deux réels tels que a < b. Toute fonction continue sur le segment I = [a, b] est bornée et atteint ses bornes.

$\underline{Remarque}$:

- Cela signifie que toute fonction continue sur le segment I = [a,b] admet des extrema globaux sur ce segment.
- Ce théorème donne l'existence d'extrema, mais ne donne pas de méthode pour les déterminer.

28.1.3 Recherche d'extrema sur un ouvert

Théorème 28.2 (Caractérisation d'un extremum, rappel) Soit a et b deux réels tels que a < b et soit J =]a, b[un intervalle ouvert de \mathbb{R} . Soit f une fonction dérivable sur J. Si f admet un extremum local en $x_0 \in J$ alors $f'(x_0) = 0$.

Attention! Ce résultat est faux si on ne suppose pas que l'intervalle est ouvert. Par exemple, considérons la fonction $f: x \mapsto x^2$ définie sur [0,1]. Elle admet un maximum en 1, est dérivable sur [0,1] mais $f'(1) = 2 \neq 0$.

Attention! Il est possible d'avoir $f'(x_0) = 0$ sans que f n'admette d'extremum en x_0 . Par exemple, considérons la fonction $f: x \mapsto x^3$ définie sur [-1,1]. Elle est dérivable sur [-1,1], de plus f'(0) = 0, mais 0 n'est ni un maximum local, ni un minimum local.

Définition 28.3 (Point critique) Soit f une fonction de classe \mathcal{C}^1 sur un intervalle ouvert J. On dit que $x_0 \in J$ est un point critique de f lorsque $f'(x_0) = 0$.

Remarque:

- On a donc montré que les extrema locaux d'une fonction de classe C^1 sur un intervalle ouvert sont à chercher parmi ses points critiques.
- Les extrema locaux d'une fonction de classe C^1 , sur un intervalle quelconque, sont donc à chercher parmi:
 - ses points critiques,
 - les bornes de l'intervalle.

Théorème 28.3 Soit f une fonction de classe C^2 sur un intervalle ouvert I et soit $x_0 \in I$ un point critique de f. Alors,

- Si $f^{(2)}(x_0) > 0$, alors f possède un minimum local en x_0 .
- Si $f^{(2)}(x_0) < 0,$ alors f possède un maximum local en $x_0.$
- $\bullet\,$ Si $f^{(2)}(x_0)=0,$ on ne peut rien conclure.

Démonstration.

Exercice 28.1 Trouver les extrema de la fonction $f: x \mapsto x^3 - x^2 - x + 1$ définie sur $\left[-2, \frac{3}{2}\right]$. Déterminer leur nature, et s'ils sont locaux ou globaux.

28.2 Fonctions convexes

28.2.1 Convexité

Définition 28.4 (Fonction convexe, concave) Soit f une fonction définie sur un intervalle I non vide et non réduit à un point.

• On dit que la fonction f est **convexe** sur I lorsque $\forall (a,b) \in I^2, \forall t \in [0,1],$

$$f(ta + (1-t)b) \le tf(a) + (1-t)f(b)$$
.

• On dit que la fonction f est **concave** sur I lorsque $\forall (a,b) \in I^2, \forall t \in [0,1],$

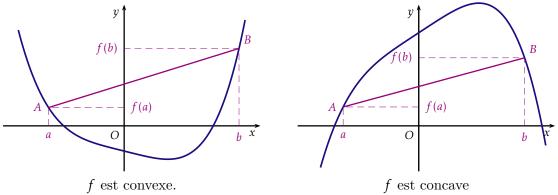
$$f(ta + (1-t)b) \ge tf(a) + (1-t)f(b)$$
.

Interprétation géométrique

Soit f une fonction définie sur un intervalle I.

Pour $t \in [0,1]$, y = tf(a) + (1-t)f(b) parcourt le segment d'extrémités f(a) et f(b), tandis que y = f(ta + (1-t)b) parcourt l'arc de courbe de f situé entre ces mêmes points. Ainsi :

- Dire que la fonction f est convexe sur I signifie que la courbe \mathcal{C}_f est située en dessous de chacune de ses cordes.
- Dire que la fonction f est concave sur I signifie que la courbe C_f est située au-dessus de chacune de ses cordes.



Exemple 28.1 La fonction définie sur \mathbb{R} par $f(x) = x^2$ est convexe sur \mathbb{R} .

Exemple 28.2 On admet que le le logarithme est concave sur \mathbb{R}_+^* . Montrer que pour tout $u \in [1,e], u-1 \leq (e-1)\ln(u)$.

Proposition 28.1 Une fonction f est concave sur I, si et seulement si, -f est convexe sur I.

Théorème 28.4 (Généralisation de l'inégalité de convexité) Soit $n \in \mathbb{N}^*$ et f une fonction définie sur un intervalle I non vide et non réduit à un point. Si f est convexe sur I, alors $\forall (x_1, x_2, ..., x_n) \in I^n$, $\forall (t_1, t_2, ..., t_n) \in [0, 1]^n$ tels que $\sum_{k=1}^n t_k = 1$,

$$f\left(\sum_{k=1}^{n} t_k x_k\right) \leqslant \sum_{k=1}^{n} t_k f\left(x_k\right).$$

Exemple 28.3 Soit f une fonction convexe sur un intervalle I. Montrer que $\forall (x_1, x_2, ..., x_n) \in I^n$,

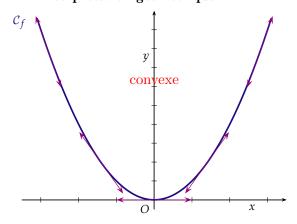
$$f\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) \leqslant \frac{1}{n}\sum_{i=1}^{n}f\left(x_{i}\right).$$

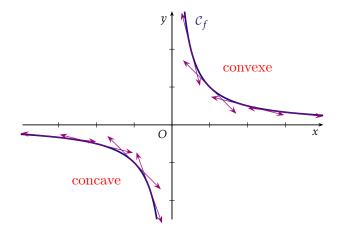
28.2.2 Convexité et dérivabilité

Théorème 28.5 (Convexité d'une fonction C^1) Soit f une fonction de classe C^1 sur un intervalle I. Les propriétés suivantes sont équivalentes :

- f est convexe sur I,
- f' est croissante sur I.
- En tout point de I, C_f est au dessus de ses tangentes,

Interprétation géométrique





La fonction carré $x \longmapsto x^2$ est convexe.

La fonction inverse $x \mapsto \frac{1}{x}$ est concave sur $]-\infty;0[$ et convexe sur $]0;+\infty[$

Exercice 28.2

Montrer que $\forall x \in \mathbb{R}$, $e^x \ge x + 1$.

Exercice 28.3 Montrer que $\forall x \in]-1;+\infty[$, $\ln(x+1) \leqslant x$.

Corollaire 28.1 (Convexité d'une fonction C^2) Soit f une fonction de classe C^2 sur un intervalle I. Alors f est convexe sur I si et seulement si pour tout $x \in I$, $f''(x) \ge 0$.

<u>Remarque</u>: De même, f est concave sur I si et seulement si pour tout $x \in I$, $f''(x) \leq 0$.

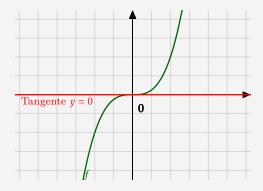
Exemple 28.4 Soit f la fonction définie sur \mathbb{R}_+^* par $f(x) = x^2 - \ln(x)$.

28.2.3 Point d'inflexion

Définition 28.5 Soit une fonction f définie au voisinage d'un réel x_0 de son ensemble de définition. On dit que le point $(x_0, f(x_0))$ est un **point d'inflexion** de la courbe \mathcal{C}_f lorsque f change de convexité en ce point (passe de «convexe» à «concave» ou bien de «concave» à «convexe»).

Proposition 28.2 Soit une fonction f dérivable en x_0 . La courbe \mathcal{C}_f possède un point d'inflexion en $(x_0, f(x_0))$ si et seulement si la tangente à \mathcal{C}_f en x_0 «traverse» \mathcal{C}_f .

Exemple 28.5 Soit f la fonction définie sur \mathbb{R} par $f(x) = x^3$. La tangente au point d'abscisse 0 coupe la courbe donc 0 est un point d'inflexion.



Théorème 28.6 Soit f une fonction de classe C^2 sur un intervalle ouvert I, et soit $x_0 \in I$. Le point $(x_0, f(x_0))$ est un point d'inflexion de la courbe C_f , si et seulement si, f'' s'annule en changeant de signe en x_0 .

Exemple 28.6 Soit f la fonction définie sur \mathbb{R} par $f(x) = x^4 - 6x^2$.

28.2.4 Extrema et fonction convexe

Théorème 28.7 Soit f une fonction convexe sur un intervalle ouvert I. Si x_0 est un point critique de f alors f admet un minimum global en x_0 .

Démonstration.

28.3 Etude graphique de fonctions. Un exemple

Méthode 28.1 (Pour réaliser l'étude graphique d'une fonction) Pour tracer le graphe d'une fonction, il est utile de :

- Etudier les variations de la fonction
- Rechercher des extrema (locaux, globaux)
- Chercher d'éventuelles tangentes intéressantes à la courbe
- Calculer les limites aux bornes du domaine de définition
- Rechercher d'éventuelles asymptotes (verticale, horizontale, oblique...)
- Etudier la convexité. Rechercher des points d'inflexion.

Exercice 28.4 (Etude d'une fonction particulière) Soit g la fonction définie sur $]0;+\infty[$ par :

$$g(x) = x^2 - 4\ln(x)$$

- 1. Montrer que g admet un minimum global sur]0;+ ∞ [.
- 2. Étudier le sens de variation de g.
- 3. En déduire le signe de g(x) pour tout réel x de $]0;+\infty[$.

On considère la fonction f définie sur $]0;+\infty[$ par :

$$f(x) = \frac{x}{4} + \frac{1 + \ln(x)}{x}$$

On appelle $\mathcal C$ la courbe représentative de f dans un repère orthonormé (unité graphique 2 cm).

- 4. Déterminer la limite de f en 0. Interpréter graphiquement le résultat.
- 5. Déterminer la limite de f en $+\infty$.
- 6. Montrer que la droite (D) d'équation $y = \frac{x}{4}$ est asymptote à la courbe \mathcal{C} .
- 7. Étudier la position relative de C et de (D). On montrera en particulier que (D) coupe C en un point A dont on calculera les coordonnées.
- 8. Étudier le sens de variation de f. Dresser le tableau de variation de f.
- 9. Etudier la convexité de f.
- 10. On donne:

$$\frac{1}{e} \simeq 0.4$$
 $\sqrt{e} \simeq 1.6$ $f(\sqrt{e}) \simeq 1.3$ $f'(\sqrt{e}) \simeq 0.1$

Représenter la courbe \mathcal{C} et la droite (D) dans un même repère orthonormé.

Corrigé

