Introduction à l'algèbre linéaire Résolution de systèmes linéaires 7.1.1 Définition et exemples Système triangulaire Méthode du pivot de Gauss L'espace vectoriel \mathbb{R}^n 7.2.1 Les exemples de \mathbb{R}^2 et \mathbb{R}^3 Généralisation pour \mathbb{R}^n avec $n \ge 2$ 7.2.3 Sous-espaces vectoriels de \mathbb{R}^n 7.3 Base d'un espace vectoriel 10 7.3.1 Combinaison linéaire 7.3.2 Famille libres et génératrices 7.3.3 Base d'un espace vectoriel Applications linéaires et produit scalaire Applications linéaires Produit scalaire

Faire des mathématiques, c'est donner le même nom à des choses différentes

Henri Poincaré

Beaucoup de problèmes mathématiques, physiques ou économiques, vérifient la propriété suivante : « si u et v sont solutions alors u+v est aussi solution, ainsi que ku où k est un réel. »

De tels problèmes sont dits linéaires et ils sont souvent plus faciles à résoudre que les problèmes plus généraux dits non-linéaires. C'est pourquoi a été introduite la notion d'espace vectoriel qui permet de définir un cadre rigoureux à de tels phénomènes.

La notion d'espace vectoriel est une structure fondamentale des mathématiques modernes. L'intérêt de ce concept est de dégager les propriétés communes que partagent ces ensembles pourtant très différents. Le nom provient de l'ensemble le plus simple à visualiser, celui des vecteurs du plan.

Par exemple, on peut additionner deux vecteurs du plan et aussi multiplier un vecteur par un réel (pour "l'agrandir", le "rétrécir" ou le "faire changer de sens" si ce réel est négatif). Dans tous les cas, le résultat de ces opérations sera encore un vecteur du plan. L'objectif de ce chapitre est de définir les notions de bases de la théorie des espaces vectoriels sur des exemples simples (\mathbb{R}^n pour n=2 ou 3) pour donner une première approche de cette théorie très riche.

Résolution de systèmes linéaires 7.1

7.1.1 Définition et exemples

Exemple 7.1

Le système
$$\begin{cases} x + y = 0 \\ x - y = 0 \end{cases}$$
 est un système linéaire

Le système
$$\begin{cases} 2x - 3y = 1 \\ -x + 7y = -25 \end{cases}$$
 est un système linéaire

Le système
$$\begin{cases} x + y - z = 0 \\ 2x + y + 3z = 7 \\ -x + 7y - 3z = 8 \end{cases}$$
 est un système linéaire

Le système
$$\begin{cases} x + y - z = 0 \\ 2x + y + 3z = 7 \end{cases}$$
 est un système linéaire

Le système
$$\begin{cases} y - z = 0 \\ 2x + y + 3z = 7 \\ -x + 7y - 3z = 8 \\ y + z = 0 \end{cases}$$
 est un système linéaire

Le système
$$\begin{cases} x^2 + y = 0 \\ x - y = 0 \end{cases}$$
 n'est pas un système linéaire.
Le système
$$\begin{cases} x + xy = 0 \\ x - y = 0 \end{cases}$$
 n'est pas un système linéaire.

Le système
$$\begin{cases} x + xy = 0 \\ x - y = 0 \end{cases}$$
 n'est pas un système linéaire.

Définition 7.1 La *i*-ème équation d'un système linéaire (S) est notée L_i et s'appelle la i-ème **ligne** du système (S).

Résoudre le système (S), c'est déterminer tous les p-uplets (x_1, \ldots, x_p) vérifiant les néquations du système.

Exemple 7.2 • Le système suivant est un système de deux équations à deux inconnues.

$$\begin{cases} 2x + y = 1 \\ x - y = -4 \end{cases}$$

Le couple (-1,3) en est une solution car

• Le système suivant est un système de trois équations à trois inconnues.

$$\begin{cases} 2x + y + 5z = 0 \\ x - 3y + z = 0 \\ 3x - 2y + 6z = 0 \end{cases}$$

On note que le triplet (0,0,0) est solution évidente, mais il peut y en avoir d'autres...

3

Remarque:

- Il ne faut pas croire qu'un système linéaire admet **toujours** une **unique** solution! En effet, certains systèmes linéaires admettent une infinité de solutions et d'autres n'admettent aucune solution.
- En pratique, on rencontre principalement des systèmes de deux équations à deux inconnues ou bien des systèmes de trois équations à trois inconnues.

Définition 7.2 On dit que deux systèmes (S) et (S') sont **équivalents** si ils ont les mêmes solutions.

7.1.2 Système triangulaire

Exemple 7.3 Les systèmes suivants sont des systèmes triangulaires

$$\begin{cases} 2x + 3y = 0 \\ -y = 2 \end{cases} \text{ et } \begin{cases} x + y - 2z = -2 \\ -2y + 3z = 3 \\ 2z = 6 \end{cases}$$

La résolution des systèmes triangulaires est très simple. On trouve la dernière inconnue grâce à la dernière équation, puis on trouve les autres inconnues successivement en remontant d'équation en équation.

Exemple 7.4 Résoudre le second système triangulaire ci-dessus.

7.1.3 Méthode du pivot de Gauss

La méthode du pivot de Gauss est un procédé algorithmique qui permet de passer d'un système linéaire de n équations à n inconnues quelconque à un système triangulaire équivalent en utilisant uniquement des opérations dites **élémentaires** sur les lignes du système.

Opérations élémentaires sur les lignes

Définition 7.3 Les opérations suivantes sur les lignes d'un système linéaire (S) sont appelées **opérations élémentaires**.

- $L_i \leftrightarrow L_j$: échange de deux lignes.
- $L_i \leftarrow aL_i$: remplacement d'une ligne par son produit par un réel **non nul** a.
- $L_i \leftarrow L_i + bL_j$: remplacement d'une ligne par sa somme avec un multiple d'une autre ligne.
- $L_i \leftarrow aL_i + bL_j$: regroupement en une opération des deux opérations précédentes.

Proposition 7.1 Si on transforme un système à l'aide d'*UNE* opération élémentaire, on obtient un système équivalent.

Attention! Il est très important de n'appliquer qu'UNE opération élémentaire à la fois. Sinon on peut ne pas obtenir un système équivalent.

Exemple 7.5

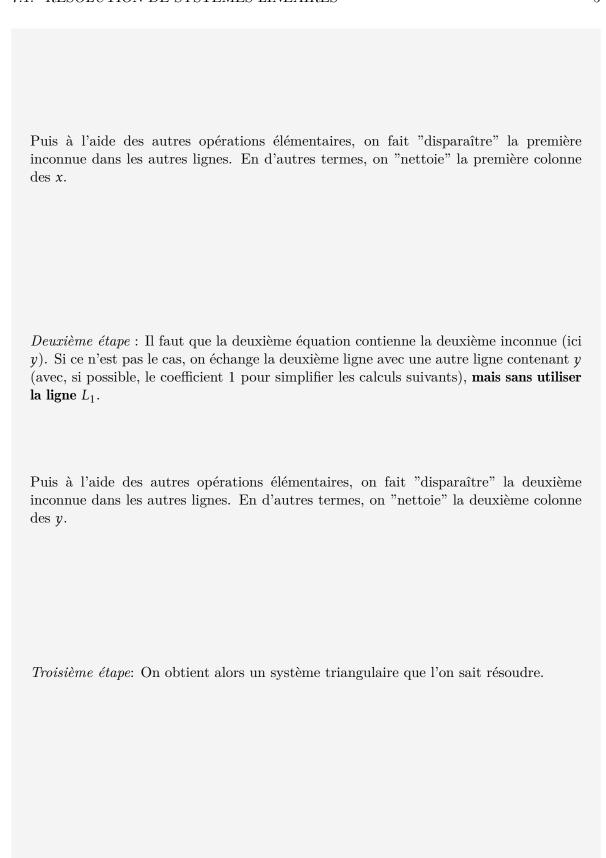
$$\begin{cases} x - 7y + 11z = 1 \\ -x + 12y - 19z = 2 \\ -3y + 5z = 3 \end{cases} \iff \begin{cases} x - 7y + 11z = 1 \\ 5y - 8z = 3 \\ -3y + 5z = 3 \end{cases} \qquad L_2 \leftarrow L_2 + L_1$$

Mise en oeuvre du pivot de Gauss sur un exemple

Exemple 7.6 Résoudre le système suivant.

$$\begin{cases} -y + 2z = 7 \\ 2x + 3y + 4z = 1 \\ x + y - z = -4 \end{cases}$$

Première étape : Il faut que la première ligne contienne la première inconnue (ici x). Si ce n'est pas le cas, on échange la première ligne avec une autre ligne qui contient x (avec, si possible, le coefficient 1 ou -1 pour simplifier les calculs suivants).



7.2 L'espace vectoriel \mathbb{R}^n

7.2.1 Les exemples de \mathbb{R}^2 et \mathbb{R}^3

L'exemple de \mathbb{R}^2

Pour $x=(x_1,x_2)\in\mathbb{R}^2,\ y=(y_1,y_2)\in\mathbb{R}^2$ et $k\in\mathbb{R},$ on définit deux opérations :

• l'addition de deux vecteurs

$$x + y = (x_1 + y_1, x_2 + y_2) \in \mathbb{R}^2$$

• la multiplication par un scalaire

$$k \cdot x = (kx_1, kx_2) \in \mathbb{R}^2$$
.

Exemple 7.7 • (1,2) + (3,4) =

- -2(7, -4) =
- -2(-1,3)+4(6,0)=

Interprétation géométrique : Lien avec la notion de vecteurs vue au lycée

L'exemple de \mathbb{R}^3

Pour $x=(x_1,x_2,x_3)\in\mathbb{R}^3,\ y=(y_1,y_2,y_3)\in\mathbb{R}^3$ et $k\in\mathbb{R},$ on définit deux opérations :

• l'addition de deux vecteurs

$$x + y = (x_1 + y_1, x_2 + y_2, x_3 + y_3) \in \mathbb{R}^3$$

• la multiplication par un scalaire

$$k \cdot x = (kx_1, kx_2, kx_3) \in \mathbb{R}^3.$$

7

Exemple 7.8 •
$$(1,0,2) + (-1,-3,4) =$$

- -2(1,3,-9) =
- \bullet -2(1,0,0)-5(2,2,2)=

Interprétation géométrique : Lien avec la notion de vecteurs vue au lycée

7.2.2 Généralisation pour \mathbb{R}^n avec $n \ge 2$

Pour $x=(x_1,x_2,\cdots,x_n)\in\mathbb{R}^n,\ y=(y_1,y_2,\cdots,y_n)\in\mathbb{R}^n,\ k\in\mathbb{R},$ on définit deux opérations :

• l'addition de deux vecteurs

$$(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n) \in \mathbb{R}^n$$

• la multiplication par un scalaire

$$k(x_1, x_2, \dots, x_n) = (kx_1, kx_2, \dots, kx_n) \in \mathbb{R}^n$$
.

Ces deux opérations vérifient une dizaine de propriétés (qu'on ne détaillera pas ici).

Définition 7.4 L'espace \mathbb{R}^n muni des deux opérations précédentes est appelé un **espace** vectoriel.

Le vecteur $(0,\ldots,0)\in\mathbb{R}^n$ et il est appelé vecteur nul.

7.2.3 Sous-espaces vectoriels de \mathbb{R}^n

Exemple 7.9 On se place dans l'espace vectoriel \mathbb{R}^3 et on considère deux sous-espaces:

- $F_1 = \{(x_1, x_2, 0) \in \mathbb{R}^3 \mid x_1 \in \mathbb{R}, x_2 \in \mathbb{R}\}$
- $F_2 = \{(x_1, x_2, 1) \in \mathbb{R}^3 \mid x_1 \in \mathbb{R}, x_2 \in \mathbb{R}\}\$

 F_1 et F_2 sont deux plans de \mathbb{R}^3 qui sont parallèles entre eux.

- 1. L'élément obtenu par addition de deux éléments de ${\cal F}_1$ est-il dans ${\cal F}_1$?
- 2. L'élément obtenu par addition de deux éléments de ${\cal F}_2$ est-il dans ${\cal F}_2$?

Théorème 7.1 On appelle sous-espace vectoriel de \mathbb{R}^n un espace F qui vérifie les trois poins suivants :

- $F \subset \mathbb{R}^n$
- $F \neq \emptyset$
- $\bullet \ \forall x \in F, \ \forall y \in F, \ \forall k \in \mathbb{R}, \ kx + y \in F$

Exemple 7.10 Montrons que l'espace F_1 défini dans l'Exemple 7.9 est un sous-espace vectoriel de \mathbb{R}^3 .

 $\underline{\textit{Remarque}} \ : \ \textit{Tout sous-espace vectoriel de } \mathbb{R}^n \ \textit{contient le vecteur nul}.$

Retour sur l'espace F₂ défini à l'Exemple 7.9.

Comme $(0,0,0) \notin F_2$, F_2 n'est pas un sous-espace vectoriel de \mathbb{R}^3 .

9

Exercice type 7.1 Montrer que $F = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid 2x_1 + x_2 - x_3 = 0\}$ est un sous-espace vectoriel de \mathbb{R}^3 .

Exercice 7.1 Pourquoi les ensembles suivants ne sont-ils pas des espaces vectoriels?

- 1. $J = \emptyset$.
- 2. $K = \{(x, y) \mid x + y = 1\}.$
- 3. $L = \{(x, y) \mid x \ge 0\}.$

Interprétation géométrique :

7.3 Base d'un espace vectoriel

Dans tout ce paragraphe, $E = \mathbb{R}^n$ ou bien désigne un sous-espace vectoriel de \mathbb{R}^n .

7.3.1 Combinaison linéaire

Définition 7.5 Soit $p \in \mathbb{N}^*$. On appelle **famille** de vecteurs de E tout p-uplet (e_1, e_2, \dots, e_p) formé de p vecteurs de E.

Exemple 7.11 Soit
$$E = \mathbb{R}^3$$
. Soit $x = (1, -\frac{1}{2}, 2) \in E$ et $y = (1, 2, 0) \in E$.

Définition 7.6 Soit $p \in \mathbb{N}^*$ et soit (e_1, e_2, \dots, e_p) une famille de p vecteurs de E. On dit qu'un vecteur x de E est **combinaison linéaire** des p vecteurs e_1, e_2, \dots, e_p s'il existe p réels k_1, k_2, \dots, k_p tels que:

$$x = k_1 e_1 + k_2 e_2 + \dots + k_p e_p = \sum_{i=1}^{p} k_i e_i$$

Les scalaires k_i sont appelés les **coefficients** de la combinaison linéaire.

Exemple 7.12 Le vecteur $(5,6,9) \in \mathbb{R}^3$ est une combinaison linéaire des vecteurs $e_1 = (1,0,0), e_2 = (0,1,0)$ et $e_3 = (0,0,1)$. En effet,

Remarque : Le vecteur nul (0,...,0) est combinaison linéaire de n'importe quels autres vecteurs.

Méthode 7.1 (Pour vérifier que x est combinaison linéaire de (e_1, e_2, \dots, e_p))

- 1. On peut en trouver une à l'oeil ou grâce à une astuce.
- 2. Sinon, on procède par identification pour trouver les k_i et on résout le système linéaire correspondant.

Attention, il est possible de ne pas trouver de combinaison linéaire!

Exercice type 7.2 Dans \mathbb{R}^3 , on considère les vecteurs $e_1=(-1,2,0),\ e_2=(-3,5,1)$ et

Montrer que x = (1, -1, 1) est combinaison linéaire des vecteurs de la famille (e_1, e_2, e_3) .

7.3.2Famille libres et génératrices

Définition 7.7 Soit F un sous-espace vectoriel de E et soient e_1, e_2, \ldots, e_p des vecteurs

On dit que la famille (e_1,e_2,\ldots,e_p) est une famille génératrice de F si tout vecteur de Fpeut s'écrire comme combinaison linéaire des vecteurs e_1, e_2, \dots, e_p :

Pour tout $x \in F$, il existe p réels $(k_1, k_2, ..., k_p)$ tels que

$$x = k_1 e_1 + k_2 e_2 + \dots + k_p e_p.$$

Attention! Rien n'assure l'unicité des coefficients k_1,k_2,\ldots,k_p c'est à dire l'unicité de l'écriture du vecteur x comme combinaison linéaire des vecteurs e_1, e_2, \dots, e_p : une condition supplémentaire est nécessaire. (voir section suivante)

Exemple 7.13 Reprenons le sous-espace vectoriel F_1 de l'Exemple 7.9. On a :

Exercice 7.2 Déterminer une famille génératrice de

$$H = \left\{ (a+b+2c, a+c, b+c) \in \mathbb{R}^3 \quad \big| \quad a, b, c \in \mathbb{R} \right\}.$$

Proposition 7.2 Les opérations suivantes transforment une famille génératrice en une nouvelle famille génératrice:

- Échanger l'ordre des vecteurs de la famille,
- Enlever un vecteur nul,
- Enlever un vecteur qui apparaît deux fois,
- Enlever un vecteur qui est combinaison linéaire d'autres vecteurs de la famille,
- Multiplier un vecteur par une constante non nulle,

Exemple 7.14 Reprenons l'espace H de l'Exercice 7.2.

Définition 7.8 Soit F un sous-espace vectoriel de E et soient $e_1, e_2, ..., e_p$ des vecteurs de F.

On dit que la famille $(e_1, e_2, ..., e_p)$ est une **famille libre** de F si aucun vecteur n'est combinaison linéaire d'autres vecteurs de la famille, c'est-à-dire si:

Pour tout p réels (k_1,k_2,\dots,k_p) vérifiant $k_1e_1+k_2e_2+\dots+k_pe_p=0_E,$ on a nécessairement

$$k_1 = k_2 = \dots = k_p = 0.$$

Une famille qui n'est pas libre est dite liée.

Exemple 7.15 Etudions la liberté des familles de \mathbb{R}^2 suivantes :

- 1. ((1,0),(1,1))
- 2. ((1,2),(3,6))

Exercice 7.3 La famille ((1,0,1),(-1,3,0),(0,1,2)) est-elle une famille libre de \mathbb{R}^3 ?

Proposition 7.3 Soit E un espace vectoriel. Une famille (e_1, e_2, \dots, e_p) est liée si et seulement si au moins un des vecteurs de cette famille peut s'écrire comme une combinaison linéaire des autres vecteurs.

$\underline{Remarque}$: En particulier:

- 1. Une famille dont l'un des vecteurs est nul est liée car sé $e_1=0_{\mathbb{R}^n}$ $e_1=0_{\mathbb{R}^n}$ $e_1=0_{\mathbb{R}^n}$ $e_2=0_{\mathbb{R}^n}$
- 2. Une famille contenant deux fois le même vecteur est liée.
- 3. Une famille formée d'un seul vecteur non nul est libre.
- Une famille (e₁,e₂) est liée si et seulement si e₁ et e₂ sont colinéaires.
 Deux vecteurs e₁ et e₂ sont dits colinéaires si il existe k ∈ ℝ tel que e₁ = ke₂.

Méthode 7.2 (Comment montrer qu'une famille U est libre?)

- 1. Si U comprend un unique élément u, il suffit de montrer que $u \neq 0$.
- 2. Si U est une famille à 2 éléments u et v, il suffit de montrer que u et v ne sont pas colinéaires.
- 3. Si la famille U comporte 3 éléments ou plus, on revient à la Définition 7.8 d'une famille libre.

Exemple 7.16 1. Justifier que la famille ((2,5)) est une famille libre de \mathbb{R}^2 .

2. Justifier que la famille ((1,2,3),(0,1,1)) est libre dans \mathbb{R}^3 .

7.3.3 Base d'un espace vectoriel

Définition 7.9 Soit F un sous-espace vectoriel de E et soient $e_1, e_2, ..., e_p$ des vecteurs de F.

On dit que la famille $(e_1, e_2, ..., e_p)$ est une **base** de F si et seulement si tout $x \in F$ se décompose de manière **unique** sous forme d'une combinaison linéaire de $(e_1, e_2, ..., e_p)$. Autrement dit si :

Pour tout $x \in F$, il existe un unique p-uplet de réels (x_1, x_2, \dots, x_p) , tel que

$$x = x_1 e_1 + x_2 e_2 + \dots x_p e_p.$$

Ce p-uplet représente les coordonnées de x dans la base (e_1,e_2,\ldots,e_p)

Exemple 7.17 Dans \mathbb{R}^2 , soient $e_1 = (1,0)$ et $e_2 = (0,1)$ alors la famille (e_1,e_2) est une base de \mathbb{R}^2 .

Proposition 7.4 Soit F un sous-espace vectoriel de E et soient $e_1, e_2, ..., e_p$ des vecteurs de F.

La famille $(e_1, e_2, ..., e_p)$ est une base de F si et seulement si $(e_1, e_2, ..., e_p)$ est à la fois une famille **libre** et une famille **génératrice** de F.

Exemple 7.18 Reprenons le sous-espace H de \mathbb{R}^3 de l'Exercice 7.2. Déterminons une base de H.

7.4 Applications linéaires et produit scalaire

7.4.1 Applications linéaires

Définition 7.10 On appelle **application linéaire** de \mathbb{R}^n dans \mathbb{R}^m , toute application f de \mathbb{R}^n dans \mathbb{R}^m telle que:

$$\forall x \in \mathbb{R}^n, \forall y \in \mathbb{R}^n, \forall k \in \mathbb{R} \quad f(kx+y) = kf(x) + f(y).$$

<u>Remarque</u>: Notons 0_n le vecteur nul de \mathbb{R}^n et 0_m le vecteur nul de \mathbb{R}^m alors pour f une application linéaire de \mathbb{R}^n dans \mathbb{R}^m , on $a: f(0_n) = 0_m$.

Exemple 7.19 Les applications suivantes sont-elles des applications linéaires?

- 1. La fonction f définie de \mathbb{R}^2 dans \mathbb{R} par: f((x,y)) = x + y + 1.
- 2. La fonction g définie de \mathbb{R}^2 dans \mathbb{R} par: g((x,y)) = x + y.

3. La fonction h définie de \mathbb{R}^2 dans \mathbb{R} par: $h((x,y)) = x \times y$.

7.4.2 Produit scalaire

Définition 7.11 Soient $x = (x_1, ..., x_n)$ et $y = (y_1, ..., y_n)$ deux vecteurs de \mathbb{R}^n . Le **produit** scalaire de x et y qui s'écrit $x \cdot y$ est le nombre :

$$x \cdot y = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n = \sum_{i=1}^n x_i y_i.$$

Exemple 7.20 Si x = (4, -1, 2) et y = (6, 3, -4) alors :

Interprétation géométrique dans \mathbb{R}^2

Soient A et B deux points de \mathbb{R}^2 de coordonnées respectives (x_A, y_A) et (x_B, y_B) , on rappelle que la distance entre les points A et B se calcule via la formule :

$$AB = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}.$$

Définition 7.12 Soit $x=(x_1,x_2)$ un vecteur de \mathbb{R}^2 et soit le point M de coordonnées (x_1,x_2) et le point O de coordonnées (0,0). On définit la norme du vecteur x notée ||x|| par :

$$||x|| = OM = \sqrt{x_1^2 + x_2^2}.$$

Soit $x=(x_1,x_2)$ un vecteur de \mathbb{R}^2 , par définition du produit scalaire, on a :

$$x \cdot x = x_1^2 + x_2^2 = ||x||^2$$
.

Par conséquent, on a la relation

$$||x|| = \sqrt{x \cdot x}.$$

Théorème 7.2 Soient u et v deux vecteurs de \mathbb{R}^2 . Soit θ l'angle formé entre eux. Alors:

$$u \cdot v = ||u|| ||v|| \cos(\theta).$$

